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Abstract

How should we measure the productivity effects of generative AI? Recent experimental
studies document substantial short-run gains. We show theoretically that measuring
the long-run effects of AI introduces two structural sources of bias when adoption af-
fects skill formation over time. In a dynamic model where workers learn by doing,
the effects of AI delegation depend on AI’s pedagogical quality. When AI delegation
slows learning by substituting for cognitive effort, two effects arise. First, as adoption
spreads, non-users become a degraded counterfactual because mentorship, spillovers,
and training environments deteriorate, causing cross-sectional estimates to overstate
lifetime effects (spillover bias). Second, even within-worker comparisons are distorted:
state-conditional productivity gains can diverge from path-based comparisons because
current skill is endogenous to past AI use, lowering the outside option against which
AI is evaluated (state-path divergence). These biases can reverse the sign of estimated
productivity effects in high-adoption sectors. We characterize when decentralized adop-
tion is inefficient and discuss identification strategies that recover the welfare-relevant
counterfactual.
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1 Introduction

Generative AI has delivered striking short-run productivity gains across knowledge-intensive
work. Customer service agents resolve more tickets per hour, consultants complete analyses
faster, junior developers ship code more quickly. These gains are especially pronounced
for less-skilled workers, compressing the productivity distribution – precisely in the tasks
most central to early-career skill formation. But the estimates are almost exclusively short-
run, measuring output over weeks or months rather than the years across which expertise
develops.

This matters because the tasks at which generative AI excels are often those through
which humans build skill. Junior developers learn debugging by wrestling with broken code;
legal associates develop judgment by drafting arguments from scratch; medical residents
acquire diagnostic intuition by working through difficult cases. When AI performs these for-
mative tasks, immediate output rises. But if AI substitutes for the cognitive effort through
which expertise develops, skill accumulation slows – and the worker who appears more pro-
ductive today may become less capable tomorrow. A technology can raise output while
degrading the state variable – human capital – that governs future productivity. Short-run
productivity gains can coexist with lifetime welfare losses.

The logic extends beyond productivity to verification. A mathematician reviewing a proof
builds deeper understanding by attempting each step before reading the solution; passive
review misses errors that active reconstruction catches. Code review exhibits the same
asymmetry: the author understands the code in a way reviewers cannot. When AI generates
code, no one possesses that authorial understanding – creating systematic vulnerability to
subtle bugs that proliferate through codebases and potentially become training data for
future AI systems, propagating the errors further.

This paper develops a framework for understanding when and why short-run produc-
tivity gains diverge from long-run welfare. We model workers who learn by doing and can
delegate tasks to AI. The key parameter is pedagogical quality, denoted µ: the degree to
which AI-assisted work contributes to skill formation relative to unassisted work. Autocom-
plete interfaces that minimize user effort correspond to low µ; Socratic tutors that prompt
reflection correspond to high µ. When µ < 1, AI substitutes for learning and standard
productivity metrics become structurally misleading. When µ ≥ 1, AI augments learning
and the opposite holds.

Our analysis identifies two structural biases in productivity estimates. The first, spillover
bias, grows with industry-level AI saturation. As adoption spreads, non-users face degraded
learning environments: reduced mentorship from seniors who delegate teaching moments
to AI, weaker peer effects as colleagues accumulate less shareable knowledge, and curric-
ula redesigned for AI-assisted workflows. Comparing AI users to these degraded non-users
overstates the benefits of adoption.

The second bias, state-path divergence, operates at the individual level. A worker who
has relied on AI for years has lower skill than they would have developed without it. Mea-
suring AI’s value against their current, atrophied skill overstates gains; the welfare-relevant
comparison is to the skill they would have had absent AI. As skills atrophy, AI appears
increasingly indispensable – even holding AI’s capabilities fixed – because the outside option
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has deteriorated.1

A mechanism distinctive to generative AI interacts with these biases. Unlike calcula-
tors or spreadsheets, which operate via fixed algorithms, generative AI learns from human-
generated content. When workers delegate tasks, they produce less original content, and
what they produce reflects less skill. Both effects degrade training data for future AI sys-
tems. This creates a feedback loop that partially stabilizes human capital: as skills atrophy,
AI quality degrades, which reduces adoption incentives and attenuates further skill loss. But
the feedback also creates a novel externality: each firm’s adoption degrades AI quality for
all users, yet atomistic firms ignore this aggregate effect.

The framework generates predictions for wages and inequality. Pre-AI cohorts com-
mand growing wage premiums as skilled workers retire: scarcity value rises for skills that
new workers cannot easily acquire. Wage inequality follows a U-shape over time – initially
compressed as AI disproportionately benefits low-skill workers (the “democratization” docu-
mented in short-run studies), then widening as pre-AI cohorts retire and AI-trained workers
converge to lower steady-state skills. High-ability workers lose twice: first through short-run
compression that erodes their current advantage, then through foregone skill development
that prevents them from reaching their potential.

When human capital generates spillovers beyond its private value, decentralized adoption
exceeds the social optimum. Optimal Pigouvian taxes internalize both the skill externality
and the training data externality. A distinctive implication is that optimal policy may
reduce measured productivity while improving welfare, because the metrics themselves are
biased. Training mandates – requiring some work be performed without AI, analogous to
manual flight hours for pilots or unassisted surgical procedures for residents – offer a practical
alternative when monitoring AI use is difficult.

We calibrate the model to experimental evidence from Bastani et al. (2025), who find
GPT-4 access reduces subsequent math test performance by 17%, implying µ ≈ 0.83 for
that setting. Strikingly similar results appear in Shen and Tamkin (2026), who conduct a
randomized controlled trial with software developers learning a new Python library: partic-
ipants using AI assistance scored 17% lower on comprehension tests than those coding by
hand, with the largest deficits in debugging skills – precisely the capability needed to ver-
ify AI-generated code. Because µ is context-dependent, we report results across the range
µ ∈ [0.3, 0.9] (see Section 4.6). At µ = 0.5, steady-state skills fall 20% below the no-adoption
counterfactual; state-conditional measurement overstates AI’s welfare contribution by 7% at
year 10 and 11% at year 20; vintage premiums for pre-AI workers reach 10.6% at year 10,
growing to 25% in steady state. The biases are smaller when µ is higher, and vanish when
µ ≥ 1 – providing a sharp null hypothesis: if AI augments learning, effect sizes should grow
over time rather than shrink.

Early evidence beyond the calibration sample favors µ < 1. METR (2025) find expe-
rienced developers are slower with AI tools yet believe AI increases their productivity –
consistent with skill atrophy impairing self-assessment. Budzyń et al. (2025) document en-
doscopist deskilling, measuring reduced learning per procedure, not merely fewer procedures.

1This bias is neither an omitted-variable problem nor a failure of identification. It arises even under full
observability and correct structural estimation. The issue is not that researchers cannot recover the path
counterfactual – it is that they are not trying to, because state-conditional gains seem like the natural object
of interest.
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del Rio-Chanona et al. (2024) find Stack Overflow activity declined sharply after ChatGPT’s
release; Burtch et al. (2024) show newer users exited fastest – consistent with failing to build
query-formulation skills, harder to explain by substitution alone. These patterns are incon-
sistent with µ ≥ 1 but predicted by our framework.

More broadly, our analysis highlights a general limitation of performance measurement
when current actions reshape the state variables that determine future productivity. A
technology can appear increasingly indispensable even when it is not improving, because
past use has degraded the alternative against which it is evaluated. The welfare-relevant
counterfactual is not “this worker without the technology” but “the worker this person would
have become.” Standard productivity measurement conflates these objects; when technology
affects skill formation, the conflation can reverse the sign of measured effects. Generative
AI is the leading contemporary example, but the theoretical structure applies wherever
learning-by-doing meets labor-saving technology – calculators and mental arithmetic, GPS
and spatial navigation, search engines and factual recall.

To sum up, our contribution is threefold. First, we show that standard productivity mea-
surement can severely misstate AI’s long-run effects: short-run estimates overstate benefits
because they compare AI users to degraded non-users (spillover bias) or to workers’ current
atrophied skills rather than the skills they would have developed (state-path divergence). We
calibrate these biases to experimental evidence, finding they are quantitatively meaningful –
7–13% overstatement at year 10 under plausible parameters, and potentially sign-reversing
in extreme cases. Second, we derive predictions for wages and inequality: pre-AI cohorts
command growing premiums, high-ability workers lose most in the long run despite gaining
least in the short run, and inequality follows a U-shape over time. Third, we characterize
optimal policy when human capital generates spillovers, showing that corrective taxes or
training mandates can improve welfare even when they reduce measured productivity.

The paper proceeds as follows. The remainder of this section reviews related litera-
ture. Section 2 develops the model. Section 3 characterizes equilibrium. Section 4 analyzes
mismeasurement, cohort effects, and quantification. Section 5 examines welfare and policy.
Section 6 concludes.

1.1 Related Literature

This paper contributes to three literatures. The task-based framework of Acemoglu and
Restrepo (2018, 2020) models automation as machines performing tasks previously done by
humans, taking human capital as fixed. We introduce a different margin: task frameworks
treat skills as a stock determining productivity (Gibbons and Waldman, 2004); we show
tasks are also inputs into skill production, so automation can reduce productivity on all
tasks, not just those directly displaced. Eloundou et al. (2024) estimate 80% of U.S. workers
could have at least 10% of tasks affected by LLMs; Acemoglu (2024) estimates TFP gains
of 0.5–0.7% over ten years – both assuming no skill atrophy. Agrawal et al. (2018, 2019)
emphasize complementarities between AI prediction and human judgment; our framework
identifies a tension – AI may complement the use of judgment while substituting for its
development.

A growing empirical literature documents short-run productivity effects: Noy and Zhang
(2023) for writing, Peng et al. (2023) for coding, and Dell’Acqua et al. (2023) identifying a
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“jagged frontier” where AI helps on some tasks but hurts on others. Handa et al. (2025)
analyze millions of AI conversations to measure usage patterns across occupations, finding
57% of usage suggests augmentation while 43% suggests automation – but these classifica-
tions treat skill as fixed. Gaessler and Piezunka (2023) find chess computers helped players
improve (µ ≥ 1), but more recent work documents deskilling: endoscopists (Budzyń et al.,
2025), navigators (Ying et al., 2024), robot-assisted workers (Cho, 2024), and knowledge
workers (Lee et al., 2025; Dell’Acqua, 2022). Chen et al. (2025) identify a “mediocrity trap”
whereby GenAI reduces effort investment in creative tasks. Our contribution is to show that
productivity and skill formation are jointly determined: measuring one without the other
conflates short-run gains with long-run costs.

The welfare implications of AI extend beyond labor productivity. Goldberg and Lam
(2025) show human creators may exit creative markets even when their work is higher quality.
Luo et al. (2025) find platforms may optimally restrict AI access to preserve human capital.
Ong and Png (2026) show deskilling technology can increase labor supply by providing
work amenity, highlighting a potential benefit our framework does not capture. Athey and
Scott Morton (2025) examines welfare effects of AI market power. Our model builds on
human capital theory (Becker, 1962), learning-by-doing (Arrow, 1962; Lucas, 1988), and
learning curves (Thompson, 2010).2 We extend Arrow’s insight that production generates
knowledge as a byproduct to show AI can sever this link.

A growing literature examines how AI threatens training and skill transmission. Garicano
and Rayo (2025) show apprenticeships become unviable when AI automates entry-level work:
if juniors generate no billable output, the economic foundation of apprenticeship collapses.
Ide (2025) develops a growth model where AI reduces opportunities for tacit knowledge acqui-
sition. Beane (2019, 2024) provide evidence that robotic surgery made trainees “optional,”
reducing hands-on practice tenfold. Brynjolfsson et al. (2025b) document early employment
effects of AI, finding heterogeneous impacts across occupations. Our contribution is dis-
tinct: we study learning within jobs rather than access to jobs. The mechanisms compound
– policies preserving entry-level employment will fail if the resulting work is pedagogically
hollow.

Our training data mechanism connects to the computer science literature on model col-
lapse (Shumailov et al., 2024; Alemohammad et al., 2024). Platforms like Stack Overflow
provide both training data and mentorship networks; when users exit, they reduce fresh
training data and degrade peer-learning, compounding the inefficiencies we identify.

The dynamic treatment literature recognizes that treatments affecting state evolution
change the causal question being answered (Abbring and Heckman, 2007). Our contribution
is to show that in the AI-skill context, this is not merely a subtle econometric issue but a
first-order quantitative problem: under plausible parameters, the bias exceeds the measured
effect and can reverse its sign. The mechanism – technology substituting for the cognitive
effort that builds skill – is specific to contexts where learning-by-doing matters and absent
from generic dynamic treatment settings.

2Our learning function draws on Mincer (1974). The “competency trap” from Levinthal and March (1993)
is related but concerns organizational learning.
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2 The Model

2.1 Environment and Primitives

Time is discrete, indexed by t ∈ {0, 1, 2, . . .}. A unit mass of firms, indexed by i ∈ [0, 1], each
employs one worker. We use lowercase (h, α ∈ [0, 1]) for individual variables and uppercase
(H, A) for aggregates.

Each period, production requires completing a unit continuum of tasks indexed by j ∈
[0, 1]. Each task can be performed either by the worker or by AI. When the worker performs
task j, output from that task is yi(j, t) = hi,t · ei,t(j)γ, where hi,t ≥ 0 is the worker’s human
capital, ei,t(j) ≥ 0 is effort allocated to task j, and γ ∈ (0, 1) governs the returns to effort.
When AI performs task j, output is yi(j, t) = At · g(j), where At > 0 is AI productivity and
g : [0, 1] → (0, 1] is the AI capability function satisfying g(0) = 1, g(1) ≡ g ∈ (0, 1), and
g′(j) < 0. We use g throughout to denote this terminal value.

The condition g′(j) < 0 captures the notion that AI is more capable at routine, well-
defined tasks (low j) than at complex, judgment-intensive tasks (high j). This ordering is
without loss of generality given the continuum structure; we are simply labeling tasks by
their amenability to AI automation.

Workers face an effort constraint: total effort across all worker-performed tasks is nor-
malized to unity. When a firm adopts AI at intensity α ∈ [0, 1], it delegates tasks in [0, α]
to AI while the worker performs tasks in (α, 1]. Standard optimization shows the worker
spreads effort uniformly across performed tasks, yielding worker output h(1− α)1−γ.3

Substituting, period output takes the tractable form

Y (h, α;A) = A ·G(α) + h · (1− α)1−γ (1)

where G(α) ≡
∫ α

0
g(j) dj is cumulative AI output, with G′(α) = g(α) and G′′(α) = g′(α) < 0.

The first term captures AI’s contribution; the second captures the worker’s. The exponent
1 − γ < 1 reflects effort concentration: when workers perform fewer tasks, effort is spread
less thinly. The function is linear in h, strictly concave in α, and satisfies ∂Y/∂α → −∞ as
α → 1−, ensuring interior optima.

2.2 Human Capital Dynamics

Human capital evolves according to

ht+1 = (1− δ)ht + λ · L(αt, ht;µ) (2)

where δ ∈ (0, 1) is depreciation, λ > 0 governs learning intensity, and L(α, h;µ) is the
learning function. AI use at t affects skill through the transition to ht+1; current output Yt
depends on ht and αt contemporaneously. The learning function is

L(α, h;µ) = [(1− α) + µ · α] · φ(h) (3)

3With per-task output he(j)γ and effort constraint
∫ 1

α
e(j)dj = 1, uniform effort e(j) = 1/(1− α) yields

total output
∫ 1

α
h[1/(1−α)]γdj = h(1−α)1−γ . With binary adoption α ∈ {0, 1}, the results are qualitatively

similar but adoption is “lumpy”: firms either fully adopt or abstain. The continuum smooths this and allows
partial adoption.
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where φ : R+ → R+ satisfies regularity conditions below, and µ ≥ −1 is pedagogical quality.
The effective learning rate ℓ(α) ≡ 1− (1− µ)α must be non-negative. When µ ≥ 0, this

holds for all α ∈ [0, 1]. When µ ∈ (−1, 0), we restrict α < 1/(1− µ). Our main results focus
on µ ∈ [0, 1), the empirically relevant substitution regime.

This specification applies to Sections 2–3. In Section 5, we augment with aggregate
dependence: Li = [(1− αi) + µαi] · φ(hi) · ψ(H), where ψ(H) captures learning spillovers.

The pedagogical quality µ determines when skill atrophy occurs. When µ < 0, AI
undermines learning. When µ = 0, learning occurs only through worker-performed tasks.
When µ ∈ (0, 1), AI partially augments learning but less than unassisted work. When µ ≥ 1,
AI fully augments learning.

Assumption 1 (Learning Capacity). The function φ : R+ → R+ is twice continuously
differentiable, strictly positive, bounded above, with φ′(h) < 0 and limh→∞ φ(h) = 0. These
properties capture diminishing returns: experts face smaller learning gains as most relevant
knowledge has been acquired.4

The key property: ∂L/∂α = (µ − 1)φ(h), which is negative when µ < 1, zero when
µ = 1, positive when µ > 1. This derivative governs whether delegation helps or hurts skill
accumulation.

The parameter µ has clear empirical content.5 We treat µ as exogenous, though it depends
on AI design, workplace norms, and user incentives. Competitive pressure exacerbates low-µ
outcomes; Appendix A analyzes this.

Settings where µ < 1 is likely include junior professional training, autocomplete-heavy
workflows, and time-pressured environments. Settings where µ ≥ 1 may apply include AI
tutors requiring engagement and tasks where AI feedback accelerates learning.

Remark 1 (Heterogeneous µ). In practice, µ varies across tasks and career stages. Such
heterogeneity strengthens our results: workers using AI during low-µ phases accumulate less
skill than those using it during high-µ phases, introducing additional path dependence.6

2.3 The Firm’s Dynamic Problem

Firms maximize the present discounted value of output. The discount factor β ∈ (0, 1)
governs the weight on future productivity; patient firms (high β) internalize skill costs more
heavily. The firm solves

V (h0;A) = max
{αt}∞t=0

∞∑
t=0

βtY (ht, αt;A) (4)

4A tractable example is φ(h) = φ0/(1 + h/ξ) for φ0, ξ > 0.
5Bastani et al. (2025) show GPT-4 access harms learning (µ < 1), but pedagogically-designed tutors

mitigate this (higher µ). Dell’Acqua (2022) documents reduced effort with AI; Brynjolfsson et al. (2025a) find
AI helping workers “move down the experience curve.” The human factors literature documents “automation
complacency” – reduced vigilance when automation handles tasks (Parasuraman and Riley, 1997; Sarter
et al., 1997). Complacency is a short-run phenomenon; skill atrophy is its long-run consequence. When
users disengage, they stop practicing, and capabilities degrade.

6The scalar µ can be interpreted as an adoption-weighted average; Appendix A.7 verifies results hold
when µ varies with skill. Lifecycle heterogeneity is particularly interesting: if novices have low µ (they need
the struggle) while experts have high µ (they’ve built foundations), optimal policy may restrict AI for juniors
while permitting it for seniors – or restrict it for seniors to preserve mentorship quality.
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Table 1: Notation Guide

Symbol Definition

h, H Individual / aggregate human capital
α, ᾱ Individual / aggregate AI adoption intensity
A AI productivity level
µ Pedagogical quality (< 1: substitutes for learning; ≥ 1: augments)
δ, λ Depreciation rate / learning intensity
β Discount factor
ℓ(α) Effective learning rate: ℓ(α) ≡ 1− (1− µ)α
h̄ No-adoption steady-state skill: δh̄ = λφ(h̄)
h∗ Steady-state skill under adoption
ψ(H) Learning spillover function (Section 5)
∆CS , ∆LR Cross-sectional / long-run productivity gain
∆SC , ∆PATH State-conditional / path-based welfare comparison

subject to the human capital law of motion (2). The value function V (h) satisfies the Bellman
equation

V (h) = max
α∈[0,1]

{
Y (h, α;A) + βV

(
(1− δ)h+ λL(α, h;µ)

)}
. (5)

Standard results ensure V exists, is unique, and is strictly increasing and concave in h.7 The
key trade-off is dynamic: higher adoption today raises current output but – when µ < 1 –
reduces future human capital.

Assumption 2 (Labor Market Structure). Labor markets are competitive with general
human capital (portable across employers). Wages equal marginal products, so workers with
lower skills earn lower wages.8

Under Assumption 2, firms internalize skill atrophy because lower worker skill reduces output
Y (h, α;A). In each period, the firm pays the worker their marginal product; the firm’s opti-
mization in (4) is equivalent to maximizing worker lifetime income when wages equal output.
The key inefficiency arises not from a wedge between firm and worker incentives, but from
spillovers across firms: when firm i’s adoption degrades human capital, it harms learning at
other firms through reduced mentorship (Section 5). With firm-specific human capital, firms
would internalize even more of the skill atrophy effect (Acemoglu and Pischke, 1999), poten-
tially reducing overadoption. However, the measurement results (Propositions 5–6) would
still hold: cross-sectional and state-conditional comparisons would still overstate welfare-
relevant effects because the counterfactual skill path remains endogenous.

7Existence and uniqueness follow from Stokey and Lucas (1989); human capital is bounded above by h̄,
ensuring the problem is well-behaved. Supporting lemmas appear in Appendix B.

8With Nash bargaining and worker bargaining power θ ∈ (0, 1), workers bear fraction θ of skill atrophy
costs. The welfare results are unchanged; only the incidence shifts.
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3 Equilibrium Characterization

This section characterizes equilibrium adoption and establishes preliminary results that un-
derpin our main findings. The key insight is that AI’s effect on skill formation – captured
by the pedagogical quality parameter µ – fundamentally shapes both adoption decisions and
long-run outcomes.

Firms balance immediate output gains against future skill costs. When µ < 1, AI sub-
stitutes for learning, creating a dynamic cost that patient firms internalize. In steady state,
higher adoption leads to lower skills (Lemma 1), and the economy can settle into a “trap”
where output is lower than under no adoption (Proposition 8). When µ ≥ 1, these dynamics
reverse: AI augments learning, and no trap can occur. The remainder of this section for-
malizes these claims; readers primarily interested in measurement implications may proceed
to Section 4 after noting that skill atrophy requires µ < 1.

3.1 The Role of Pedagogical Quality

The firm’s adoption decision balances immediate productivity gains against dynamic skill
costs. When AI is sufficiently productive, some adoption is always optimal; complete delega-
tion is never optimal because effort concentration on remaining tasks becomes increasingly
valuable.9

Assumption 3 (AI Productivity). AI is sufficiently productive that adoption is attractive
even accounting for dynamic skill costs:

A · g(0)− h̄(1− γ) > βV̄ ′λ(1− µ)φ(h̄)

where h̄ is the steady-state human capital without AI, and V̄ ′ ≡ V ′(h̄) is the marginal value
of human capital at that steady state. The left side is the static marginal benefit of adoption
at α = 0; the right side is the discounted marginal learning cost. This ensures interior
adoption α∗ > 0 in the dynamic problem, not just the static one. We maintain µ ≥ 0
throughout; the case µ ∈ (−1, 0) requires the additional restriction α < 1/(1− µ) to ensure
non-negative learning (see Section 2).

The following proposition characterizes how pedagogical quality shapes adoption:

Proposition 1 (Role of Pedagogical Quality). Under Assumptions 1–3, the firm’s optimal
adoption α∗(h) ∈ (0, 1) satisfies:

(i) When µ < 1, adoption generates a dynamic skill cost: ∂α∗/∂µ > 0 locally around stable
steady states.

(ii) When µ = 1, adoption is determined purely by the static trade-off ∂Y/∂α = 0.

(iii) When µ > 1, adoption generates a dynamic skill benefit: optimal α∗ may exceed the
static optimum argmaxα Y (h, α;A).

Proof. The proof for this and all other results can be found in Appendix B.

9Formally, ∂Y/∂α→ −∞ as α→ 1− when h > 0.
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The proposition captures a fundamental asymmetry. In the substitution regime (µ < 1),
firms face an intertemporal trade-off: higher adoption raises current output but impairs skill
development. Forward-looking firms internalize this cost and adopt less than myopic firms
would. Unlike prior work focusing on which tasks machines perform (Autor et al., 2003;
Acemoglu and Autor, 2011), we show automation can change the supply of skills by altering
how they accumulate.10

Why doesn’t the market simply select for patience? Several corrective mechanisms fail:
patient firms are competitively punished short-run before their strategy pays off (Propo-
sition 15); spillovers mean private returns to patience understate social returns; and the
measurement problem in Section 4 causes even planners to perceive skill-preserving policies
as costly. The trap persists because rationality operates on distorted signals.

3.2 Steady-State Equilibria

A steady-state equilibrium is a pair (h∗, α∗) where adoption is optimal given skills, and skills
are stationary given adoption. The stationarity condition

δh∗ = λℓ(α∗)φ(h∗) (6)

balances depreciation against learning, where ℓ(α) is the effective learning rate defined in
Table 1. We impose standard regularity conditions ensuring interior, stable steady states.11

Lemma 1 (Steady-State Human Capital). For any adoption level α, there exists a unique
steady-state skill level h∗(α) on the stable branch of the dynamics. When µ < 1, higher
adoption reduces steady-state skill: ∂h∗/∂α < 0. When µ ≥ 1, the opposite holds.

Remark 2 (Stability). With φ strictly decreasing, the stationarity condition admits a unique
steady state. Stability is guaranteed when depreciation dominates the learning feedback:
δ > λℓ(α∗)|φ′(h∗)|. Since φ′(h∗) < 0, this is equivalent to δ+λℓ(α∗)φ′(h∗) > 0; the appendix
formalizes the regularity conditions.

The lemma establishes that AI’s long-run effect on skills depends entirely on whether it
substitutes for or augments learning. This yields the following characterization of steady-
state equilibria:

Proposition 2 (Steady-State Characterization). Under Assumptions 1–3 with µ < 1:

(i) Steady-state human capital satisfies h∗ < h̄ for any interior adoption α∗ > 0.

(ii) When µ ≥ 1, steady-state human capital satisfies h∗ ≥ h̄.

10This connects to the “deskilling” literature (Braverman, 1974), but our framework allows for the opposite
when µ > 1. The comparative static ∂α∗/∂µ > 0 is local; global results require additional curvature
conditions stated in Appendix B.

11These are standard technical requirements: that steady states are interior, that local stability holds, that
static curvature dominates dynamic terms in the FOC, and that the policy function is monotone. These
ensure the value function is well-behaved and that comparative statics have unambiguous signs. They hold
for generic parameter values; Appendix B states them formally.
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This dichotomy has a sharp implication: skill atrophy requires µ < 1. If µ ≥ 1, skills
cannot fall below the no-adoption benchmark h̄, and AI’s direct productivity contribution
ensures Y ∗ > h̄. The empirical question of which regime applies is first-order for policy.

We now establish that equilibrium is unique and globally stable – essential properties for
welfare analysis and comparative statics.

Proposition 3 (Uniqueness and Global Stability). Under Assumptions 1–3 and the regu-
larity conditions in Appendix B:

(i) There exists a steady-state equilibrium (h∗, α∗) with h∗ ∈ (0, h̄) and α∗ ∈ (0, 1).

(ii) The steady-state equilibrium is unique.

(iii) For any initial condition h0 ∈ (0, h̄], (ht, αt) → (h∗, α∗) as t→ ∞.

(iv) When µ < 1 and h0 = h̄, the optimal paths are monotonic: {ht} is strictly decreasing
and {αt} is strictly increasing until convergence.

The proof (in Appendix B) proceeds by analyzing the one-dimensional transition map
T (h) = (1−δ)h+λℓ(α∗(h))φ(h). Global stability follows from the contraction property under
our regularity conditions. Part (iv) follows from the policy function’s slope: dα∗/dh < 0 when
µ < 1 (AI is more valuable when skills are lower). Starting from h0 = h̄ > h∗, skills decline
monotonically toward h∗; since αt = α∗(ht) and the policy function is decreasing, adoption
rises monotonically toward α∗. Intuitively, as skills atrophy, workers become increasingly
reliant on AI.

Conditional on µ < 1, how do other parameters shape outcomes?

Proposition 4 (Comparative Statics). At a stable interior steady state with µ < 1:

(i) ∂α∗/∂A > 0 and ∂h∗/∂A < 0: higher AI productivity raises adoption and lowers skills.

(ii) ∂α∗/∂β < 0 and ∂h∗/∂β > 0: more patient firms adopt less and maintain higher skills.

(iii) ∂h∗/∂λ > 0: faster learners maintain higher skills.

(iv) ∂α∗/∂µ > 0: better pedagogical quality raises adoption. The effect on skills ∂h∗/∂µ is
ambiguous, reflecting offsetting direct and indirect effects (see below).

These comparative statics align with empirical patterns. Result (i) is consistent with
evidence that more capable AI systems see faster adoption (Brynjolfsson et al., 2025a).
Result (ii) implies short-termism exacerbates skill atrophy, consistent with observations that
firms under competitive pressure adopt AI more aggressively (Autor, 2024). Result (iii)
implies that occupations where learning is central – surgery, law, software engineering – face
larger stakes from AI adoption decisions.

Result (i) echoes Acemoglu and Restrepo (2018): better automation technology increases
automation. But unlike their framework where human capital is fixed, here the increased
automation endogenously degrades the human capital stock. Result (ii) implies that short-
termism – whether from capital market pressure, managerial myopia, or high discount rates
– exacerbates skill atrophy. Result (iv) reflects offsetting forces: the direct effect of higher
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µ raises h∗ (better learning per unit of AI-assisted work), but the indirect effect through
increased adoption lowers h∗ (more adoption means less unassisted practice). The direct
effect dominates when the adoption response ∂α∗/∂µ is small relative to current adoption
α∗; this holds generically when µ is not too far below 1.12

Remark 3 (Robustness to functional forms). The qualitative results – skill atrophy when µ <
1, overadoption with spillovers, divergence between cross-sectional and long-run estimates –
do not depend on the specific functional forms chosen. What matters is that learning-by-
doing exhibits diminishing returns at high skill levels, that AI adoption reduces the rate of
learning when µ < 1, and that spillovers create a wedge between private and social returns
to human capital. Appendix A.7 verifies robustness to alternative formulations.

4 Mismeasurement of AI Productivity

This section presents our main results on mismeasurement. We identify two distinct sources
of bias in AI productivity estimates: spillover bias, which arises when AI adoption degrades
learning environments for non-users, and state-path divergence, which arises when current
skill reflects past AI use. Both biases operate whenever µ < 1; neither requires restrictive
parameter assumptions. We then characterize the skill trap – an extreme case where adoption
reduces output below the no-adoption benchmark – as the limiting scenario where bias
reverses the sign of measured effects.

A clarification on what standard empirical methods recover. Consider three objects: (i)
the causal effect of AI on output holding current skill fixed ; (ii) the causal effect of AI on
lifetime output along the realized path; and (iii) the welfare comparison to a counterfactual
world without AI. Standard productivity studies – including well-identified experiments –
estimate (i). Our contribution is that (i) diverges from (iii) when skill is endogenous to past
AI use, and this divergence can reverse sign. The critique is not of empirical methods but
of the welfare question those methods implicitly answer.

As a benchmark, consider what happens if skills are exogenous – fixed endowments un-
affected by technology use. Cross-sectional productivity comparisons would then correctly
measure welfare effects: AI users would outperform non-users by exactly the amount AI
contributes, and this gap would persist indefinitely. Similarly, if learning occurred inde-
pendently of task performance, or if human capital generated no spillovers across workers,
standard empirical designs would recover the welfare-relevant treatment effect. Our results
identify precisely which of these conditions must fail, and how, for mismeasurement to arise.

4.1 Spillover Bias

The choice of counterfactual fundamentally determines whether AI adoption appears bene-
ficial or harmful. We define the relevant counterfactuals and show how they diverge.

12One might expect patient firms to gain long-run competitive advantage as their workers remain skilled.
However, Appendix A shows the opposite: impatient firms gain market share in the short run, potentially
driving out patient firms before their restraint pays off.
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Definition 1 (Alternative Counterfactuals). The cross-sectional counterfactual compares
AI users to contemporaneous non-users: ∆CS

t = Y (hUt , αt) − Y (hNU
t , 0), where superscript

U denotes users and NU denotes non-users in an AI-adopting economy. The long-run
counterfactual compares AI users to the hypothetical path where AI was never adopted:
∆LR

t = Y (hUt , αt)−Y (hNA
t , 0), where NA denotes the no-adoption counterfactual. All coun-

terfactual paths start from the same initial condition h0 = h̄.

The cross-sectional counterfactual is the comparison made by most empirical studies,
including RCTs that randomize AI access. The long-run counterfactual captures the welfare-
relevant question of whether AI raises or lowers productivity relative to a world without
the technology. These counterfactuals diverge when aggregate AI adoption affects learning
opportunities for non-users – through reduced mentorship, weaker knowledge spillovers, or
degraded training institutions.

Both counterfactuals answer legitimate questions. The cross-sectional counterfactual an-
swers: should an individual firm adopt AI given that competitors may also adopt? The long-
run counterfactual answers: does AI adoption improve welfare relative to a world without
AI? These questions have different answers when spillovers are present. Existing empirical
work answers the first question; our contribution is to highlight when the answer to the
second question differs.

To formalize spillovers, we parameterize ψ(H) = (H/H̄)η where η ≥ 0 governs spillover
intensity. When η = 0, learning is independent of aggregate skill; when η > 0, individual
learning depends on the skill environment. Evidence on learning spillovers comes from peer
effects in education (Sacerdote, 2001) and coworker effects in firms (Mas and Moretti, 2009).
These literatures estimate spillover elasticities in the range 0.05–0.2; our baseline η = 0.3 is
at the upper end of this range, implying our spillover bias estimates are upper bounds.13

A natural conjecture is that if AI users consistently outperform non-users – as documented
in study after study – then AI must be raising aggregate welfare. The next result shows this
conjecture is false.

Proposition 5 (Spillover Bias). Suppose µ < 1 and learning spillovers are present (ψ′(H) >
0, i.e., η > 0). Then cross-sectional estimates exceed long-run estimates: ∆CS

t > ∆LR
t for

all t > 0, with the gap strictly increasing in t.

The mechanism is that aggregate AI adoption degrades non-users’ learning environments
through reduced mentorship, weaker peer effects, and curricula redesigned for AI-assisted
workflows. Comparing AI users to these degraded non-users overstates the benefits of adop-
tion. The bias is zero at t = 0 (before adoption affects non-users) and grows as AI diffuses.
When spillovers are absent (η = 0), cross-sectional estimates correctly measure long-run
effects; spillover bias disappears but state-path divergence (below) remains.

When does the divergence matter? The bias is largest in high-adoption sectors with
strong mentorship traditions – software development is a leading example. Within-firm
studies comparing coworkers are most affected; cross-industry comparisons least affected.

The bias we identify is neither an omitted-variable problem nor a failure of identification.
It arises even under full observability and correct structural estimation. It is not a general

13With η = 0.3, a 10% decline in aggregate human capital reduces individual learning by 3%.
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equilibrium wage adjustment: we hold prices fixed and identify mismeasurement in physical
productivity. It is not cohort selection: we compare counterfactual paths for the same
workers, not different populations. Even a randomized experiment correctly identifying
causal effects would face this problem, because the treatment changes the state variable
against which future benefits are measured.

4.2 State-Path Divergence

The spillover bias concerns how AI adoption by some workers degrades the counterfactual for
others. We now turn to a second bias that operates even at the individual level and does not
require spillovers: path dependence in human capital causes state-conditional productivity
gains to diverge from welfare-relevant path comparisons.

Definition 2 (State-Conditional vs. Path Counterfactuals). The state-conditional coun-
terfactual holds human capital fixed: ∆SC

t = Y (hUt , αt) − Y (hUt , 0). The path counterfac-
tual compares lifetime output under adoption versus the no-adoption path: ∆PATH(β̃) =∑∞

τ=0 β̃
τ [Y (hUτ , ατ )− Y (hNA

τ , 0)], where β̃ is the evaluator’s discount factor.

Two discount factors appear: β (the firm’s, determining adoption) and β̃ (the evaluator’s,
determining welfare). When β̃ = β, revealed preference implies ∆PATH(β) ≥ 0. But under
more patient evaluation (β̃ > β), ∆PATH can be negative even though adoption was privately
optimal. Why might β̃ > β? Firms face capital market pressure favoring short-term returns;
social discount rates for policy evaluation are typically lower; and individual workers may be
credit-constrained, unable to forgo current income for future skill gains. The wedge between
β and β̃ is not a market failure per se – firms optimize correctly given their constraints – but
it implies that privately optimal adoption can be socially excessive even absent spillovers.

Most empirical implementations estimate AI’s contribution holding current worker state
fixed – explicitly via controls for experience, tenure, or skill proxies, or implicitly by com-
paring the same worker before and after adoption. These designs naturally recover ∆SC :
the effect of turning AI “on” at a given skill level. In causal-inference terms, this is a con-
trolled direct effect holding a post-treatment variable (skill) fixed; but when the treatment
changes that variable, the welfare-relevant object is the total effect along the counterfactual
path. The wedge between these objects is not an econometric failure – it is an equilibrium
implication of endogenous human capital.

The measurement problem we identify does not depend on disagreement about discount
factors. Even when β̃ = β, the state-conditional gain ∆SC

t overstates AI’s welfare contribu-
tion because it conditions on current skill hUt rather than the counterfactual skill hNA

t . The
firm’s choice is privately optimal given ht, but empirical measurement using ∆SC

t conflates
“valuable given current skill” with “valuable relative to never adopting.”

Proposition 6 (State-Path Divergence). Suppose µ < 1 (no spillovers required). Then:

(i) The ratio ∆SC
t /hUt is strictly increasing in t. Moreover, for any ε > 0, there exist

parameter values such that h∗/h̄ < ε, in which case ∆SC
t /hUt > 1/ε for t sufficiently

large.

14



(ii) When steady-state output falls below the no-adoption benchmark (Y ∗ < h̄), we have
∆SC

t > 0 for all t: AI appears indispensable even when it reduces long-run output.

The result formalizes the intuition from Section 1. As skills atrophy toward h∗ < h̄,
the worker’s AI-independent productivity falls, inflating the measured value of AI in state-
conditional comparisons. Continued use is optimal given current state, even if initial adoption
was welfare-reducing.14

Corollary 1 (Welfare Reversal Under Patient Evaluation). For any β̃ > β̄, ∆PATH(β̃) < 0:
under more patient evaluation than the firm’s own discount factor, the adoption path is
welfare-inferior.

The corollary highlights a tension between private optimality and social evaluation.
Adoption may be privately optimal for the firm (revealed preference implies ∆PATH(β) ≥ 0)
yet welfare-reducing under the more patient evaluation appropriate for policy analysis. This
is not a market failure – the firm optimizes correctly given its discount factor – but a diver-
gence between private and social time preferences.

State-path divergence is a measurement problem, not an externality. It arises even when
agents fully internalize skill dynamics and optimize perfectly. Patient firms in our model
restrain adoption precisely because they value future skills; the bias occurs because empirical
comparisons condition on current skill ht, treating it as exogenous when it reflects past
adoption. Short-run productivity estimates characterize AI’s value given current skills, while
long-run welfare depends on how adoption reshapes the skill distribution over time.

The two biases differ in structure and remedy. Spillover bias is a cross-sectional exter-
nality (ψ′(H) > 0) calling for Pigouvian correction. State-path divergence is a longitudinal
measurement error (µ < 1) calling for counterfactual-aware research designs. For policy
evaluation, this implies planners considering restrictions will face inflated cost estimates;
cohort comparisons and cross-country variation in adoption timing approximate the correct
counterfactual more closely than state-conditional designs.

4.3 The Skill-Data Feedback Loop

The preceding analysis took AI quality as fixed. We now introduce a mechanism distinctive
to generative AI: because these systems learn from human-generated content, widespread
adoption can degrade the data on which future AI systems train. This creates a feedback
loop with subtle dynamics.

We emphasize that the training data mechanism is not necessary for our core results.
The spillover bias (Proposition 5) requires human capital spillovers but not training data
degradation. The state-path divergence (Proposition 6) requires only µ < 1; it holds even
with no spillovers and fixed AI quality. The feedback loop adds a distinct channel – and a
distinct externality – but the qualitative mismeasurement phenomena survive even if data
curation fully mitigates model collapse. Nevertheless, the mechanism is theoretically interest-
ing because generative AI is one of the few technologies where learning flows bidirectionally
between humans and machines.

14The insight that technologies can appear indispensable because they degrade alternatives is familiar from
the path dependence literature (David, 1985), but that work concerns technology lock-in, not measurement
distortion.
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The distinction from previous automation technologies is stark. A calculator does not
need humans to know arithmetic to compute 937× 48; its accuracy is invariant to the skill
of its users. Calculators and spreadsheet software operate via fixed algorithms that neither
learn from nor degrade with human practice. GPS navigation works identically whether or
not drivers remember local streets – and while GPS may atrophy navigational skills (Ying
et al., 2024), it does not learn from human navigation, so no feedback loop exists. Generative
AI is fundamentally different: it learns from human output. If workers delegate more tasks
to AI, they produce less original content, and the content they do produce may be lower
quality. Both effects degrade training data for future AI systems.

We model AI productivity as evolving according to

At+1 = (1− ζ)At + ζ ·Q(Ht, ᾱt) (7)

where ζ ∈ (0, 1) governs how quickly AI quality adjusts, ᾱt is average adoption intensity,
and Q : R+ × [0, 1] → R+ satisfies ∂Q/∂H > 0 and ∂Q/∂ᾱ < 0. The dependence on H
captures that higher-skilled humans generate higher-quality training data; the dependence
on ᾱ captures that AI-generated content dilutes the human signal. This specification builds
on the computer science literature documenting “model collapse”: recursive training on AI-
generated content causes distributional tails to disappear, yielding increasingly homogeneous
outputs (Shumailov et al., 2024).15

The law of motion implies ∂At+1/∂Ht > 0 (human capital improves training data) and
∂At+1/∂ᾱt < 0 (adoption degrades it). This creates a feedback loop with distinct effects on
levels versus dynamics.

Proposition 7 (Feedback Loop: Stabilizing Force on Levels). With endogenous AI qual-
ity, let H∗(A0) denote steady-state skill when AI quality is exogenously fixed at A0, and let
(H∗∗, A∗∗) denote the joint steady state with endogenous AI quality. Then H∗∗ > H∗(A0):
endogenous AI quality raises steady-state human capital relative to the exogenous-A bench-
mark.

The benchmark A0 represents the AI quality that would prevail if humans were fully
skilled and produced abundant high-quality training data – a hypothetical upper bound on
AI capability. The comparison asks: does the feedback loop (skill atrophy → AI degradation
→ reduced adoption) leave humans better or worse off than if AI quality remained at this
high level?

The intuition follows from Proposition 4: ∂α∗/∂A > 0 and ∂h∗/∂A < 0. When AI quality
falls, firms adopt less, and lower adoption means more learning-by-doing. The feedback loop
is thus stabilizing: skill atrophy degrades AI quality, which reduces adoption incentives,
which protects skills. The mechanism is self-correcting at the aggregate level, even though
individual firms ignore their contribution to AI quality degradation.

This stabilization does not eliminate the skill trap – it merely attenuates it. Skills still fall
below the no-adoption benchmark (H∗∗ < H̄), but less severely than they would if AI quality
remained fixed at its initial high level. The feedback also creates a novel externality: each

15Follow-up work confirms this across settings: Alemohammad et al. (2024) document “Model Autophagy
Disorder” in self-consuming generative models; Dohmatob et al. (2024) formalize degradation through scaling
laws.
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firm’s adoption degrades AI quality for all users, but atomistic firms ignore this aggregate
effect. We formalize this training data externality in Section 5.

The feedback loop has implications for the temporal pattern of AI capabilities. Early in
AI diffusion, when human skills remain high and AI-generated content is scarce, training data
quality is high and AI improves rapidly. As adoption spreads and skills atrophy, training data
quality degrades, slowing AI improvement. The model thus predicts a natural deceleration in
AI capability growth – not from technical limits, but from the erosion of the human capital
that feeds it. This “plateau” would emerge even if underlying AI architectures continued to
improve, because the binding constraint shifts from algorithms to training data quality.

Evidence is consistent with early-stage feedback effects. Stack Overflow activity declined
25% within six months of ChatGPT’s release (del Rio-Chanona et al., 2024), with newer
users most likely to exit (Burtch et al., 2024). Dell’Acqua (2022) document that workers
using AI invest less cognitive effort – producing content that, if used for training, transmits
less expertise. If future models train on this degraded corpus – with fewer novel solutions
and less expert-level discourse – they inherit its limitations. The technology risks consuming
its own seed corn.

The feedback mechanism suggests that AI development faces a novel constraint absent
from previous automation waves. Traditional automation could proceed indefinitely: better
robots do not require skilled assembly-line workers to train them. Generative AI may face
diminishing returns not from algorithmic limits but from the degradation of its human inputs.
This has implications for AI governance: policies that preserve human skill – even at the
cost of slower AI adoption – may ultimately produce better AI systems. The choice is not
simply “humans versus machines” but rather how to maintain the human capital stock that
feeds machine learning.

4.4 When Bias Reverses Sign: The Skill Trap

The mismeasurement biases identified above operate whenever µ < 1. We noted in Sec-
tion 3 that steady-state output can fall below no-adoption levels when AI substitutes for
learning. In this section, we fully characterize those instances by identifying necessary and
sufficient conditions for what we call the skill trap: AI can appear beneficial in cross-sectional
comparisons while actually reducing long-run output.

Definition 3 (Skill Trap). The economy is in a skill trap if the equilibrium path {(ht, αt)}∞t=0

satisfies:

(T1) Positive adoption: αt > 0 for all t ≥ 0.

(T2) Level crossing: There exists T ∗ > 0 such that Yt > Y NA
t for t < T ∗ and Yt < Y NA

t

for t > T ∗, where Y NA
t = Y (hNA

t , 0) = hNA
t is output on the no-adoption path.

(T3) Individual rationality: αt = α∗(ht) solves the firm’s problem (5) at each t.

Condition (T2) concerns productivity levels, not growth rates: the trap means AI users
eventually produce less than they would have produced without AI. The trap is individually
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rational: firms optimize at every date, yet the equilibrium path delivers lower long-run output
than no adoption.16

Proposition 8 (Existence of the Skill Trap). Under Assumption 3 with initial condition
h0 ≤ h̄, the economy is in a skill trap if and only if:17

(i) µ < 1 (AI substitutes for learning);

(ii) A · G(1) < h̄ (AI’s maximum output contribution falls short of fully-skilled human
output);

(iii) β < β̄, where β̄ ∈ (0, 1) is the unique solution to Ψ(β̄) ≡ A ·G(α∗(β̄)) + h∗(α∗(β̄))[1−
α∗(β̄)]1−γ − h̄ = 0.

The trap requires all three conditions. Condition (ii) may not hold for highly capable AI
systems – modern large language models may satisfy A · G(1) > h̄ for many tasks. When
this holds, AI adoption is unambiguously beneficial: even complete skill atrophy leaves
output above the no-adoption benchmark.18 But the trap is not our main result. The
mismeasurement biases (Propositions 5–6) operate under the much weaker condition µ < 1
alone, regardless of AI capability or firm patience. The trap clarifies when bias reverses sign;
the biases themselves are general.

Corollary 2 (Sign Reversal). When the economy is in a skill trap, the measured effect has
the wrong sign: ∆CS

t > 0 > ∆LR
t for t sufficiently large.

In the skill trap, ∆LR < 0 follows directly from Y ∗ < h̄. What spillovers provide is
∆CS > 0 despite this: learning spillovers degrade non-users’ skills so that hNU∗ < h̄, allowing
Y ∗ > hNU∗ even when Y ∗ < h̄. Cross-sectional gains can coexist with long-run losses.

4.5 Cohort Effects and Wage Dynamics

The mismeasurement problems identified above have implications for the distribution of
gains from AI across workers and over time. This section embeds our framework in a labor
market where wages equal marginal products, generating predictions about how AI reshapes
wages across ability levels, cohorts, and aggregate inequality.

A growing empirical literature documents that AI disproportionately benefits less-skilled
workers in the short run. Brynjolfsson et al. (2025a) find productivity gains of 14% overall
but exceeding 30% for novices in customer service; Noy and Zhang (2023) find larger effects
for less experienced writers; Peng et al. (2023) document similar patterns for coding. This
“democratization” has prompted optimism about reducing inequality (Autor, 2024). Our
framework suggests a more complex dynamic: the short-run compression may reverse as skill
atrophy accumulates.

16This relates to the “competency trap” in organizational learning (Levinthal and March, 1993).
17The proof requires standard regularity conditions; see Appendix B.
18In the limit where AI dominates human capability across all tasks, skill atrophy becomes a transition

rather than a cost. Our analysis applies where human capital remains economically relevant; if AI capabilities
grow to dominate human skills universally, the welfare calculus changes fundamentally.
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Consider workers who differ in learning ability θi, where higher θ implies faster skill
accumulation: φi(h) = θiφ(h). Let hNA

t (θ) and hUt (θ) denote skill paths without and with
AI adoption for a worker of ability θ.

Proposition 9 (Ability Reversal and Vintage Premium). Suppose µ < 1 and let wages equal
marginal products, so w ∝ h.19 Then:

(i) The skill loss from AI adoption is increasing in ability: ∂(hNA
t − hUt )/∂θ > 0.

(ii) Workers trained before AI diffusion command wage premium πt = h̄/hpostt over workers
trained with AI, with πt increasing in t until pre-AI cohorts retire.

Part (i) says high-ability workers bear the largest long-run costs – precisely those who
benefit least from AI in short-run studies. These workers lose twice: in the short run,
AI compresses their productivity advantage by disproportionately helping their less-skilled
peers; in the long run, AI impedes their skill development, preventing them from reaching
their full potential. Short-run RCTs document the first channel and interpret it as democra-
tization. Our framework identifies the second channel: the workers who gain least from AI’s
immediate assistance are also those who sacrifice the most in foregone learning. We call this
ability reversal because short-run and long-run effects have opposite signs for high-ability
workers – they appear to benefit least in experiments but lose most over careers. This creates
a political economy challenge: early AI adoption generates enthusiasm because those who
benefit most visibly (low-ability workers gaining immediate productivity) are not those who
bear the largest long-run costs. The pattern is consistent with Dell’Acqua et al. (2023)’s
finding that AI “levels the playing field” – but leveling may reflect suppression of the top
rather than elevation of the bottom.

Part (ii) says pre-AI cohorts become increasingly valuable. Early evidence is consistent
with vintage effects: Beane (2019) documents that robotic surgery reduced trainee hands-on
experience tenfold, with senior surgeons becoming increasingly valuable; Garicano and Rayo
(2025) argues that if AI automates entry-level work, the economic foundation of apprentice-
ship collapses.

The cohort dynamics generate predictions for aggregate inequality. Let Npre
t denote

the mass of pre-AI workers (declining through retirement) and σ2
t = Var(wt) denote wage

variance across all workers at time t.

Proposition 10 (U-Shaped Inequality). Suppose µ < 1 and pre-AI cohorts retire at rate
ν > 0. Then wage variance σ2

t follows a U-shaped path:

(i) dσ2
t /dt < 0 for t small: AI compresses wages by raising low-skill productivity.

(ii) dσ2
t /dt > 0 for t large: scarcity of pre-AI skills widens inequality.

(iii) limt→∞ σ2
t > σ2

0 when h∗ < h̄: long-run inequality exceeds its pre-AI level.

19With atomistic firms and competitive labor markets, the wage equals the marginal product of labor.
In our specification, output is linear in h (equation 1), so the marginal product – and hence the wage –
is proportional to human capital. This abstracts from complementarities between workers of different skill
levels; Kremer (1993) and Acemoglu and Autor (2011) analyze such complementarities. Our qualitative
results extend to more general production functions provided wages are increasing in skill.

19



Remark 4 (Reconciling Propositions 9 and 10). Both propositions define a premium πt in-
volving pre-AI workers, but they describe different phases. Proposition 9(ii) states that πt
is increasing – this describes the bilateral comparison between a fixed pre-AI cohort and the
converging post-AI skill path hpostt → h∗. Proposition 10 describes the full cross-sectional
distribution: initially AI compresses wages (benefiting low-skill workers), but as pre-AI co-
horts retire, scarcity drives their premium up. The “U-shape” refers to aggregate inequality
σ2
t , not to πt directly: πt for any fixed bilateral comparison is monotone, but aggregate

inequality first falls (compression) then rises (scarcity).

The U-shape implies that early studies – which necessarily observe only the compres-
sion phase – may systematically mislead policymakers about long-run distributional conse-
quences. A policymaker observing falling inequality in the first decade of AI adoption might
conclude that AI reduces skill gaps. But this compression is temporary, driven by the erosion
of high-skill workers’ advantages rather than the elevation of low-skill workers’ capabilities.
The long-run effect is the opposite: as pre-AI cohorts retire and AI-trained workers converge
to h∗ < h̄, inequality eventually exceeds its pre-AI level.

4.6 Quantifying the Bias

This section provides an illustrative calibration to gauge the potential magnitude of mis-
measurement. The exercise is not predictive; it demonstrates that bias can be economically
meaningful under parameters anchored to experimental evidence.

Identifying pedagogical quality. The parameter µ is the paper’s key unknown. Di-
rect identification requires panel data tracking AI usage and subsequent skill assessments
– a demanding requirement that only recent experiments satisfy. We do not extrapolate
from a single estimate; instead, we treat µ as uncertain and report results across the range
µ ∈ [0.3, 0.9]. Our qualitative results hold for any µ < 1; the calibration illustrates how
magnitudes vary. Narrowing this range is a first-order empirical priority.

Bastani et al. (2025) conduct a randomized experiment in which students solving math
problems were assigned to one of three conditions: no AI access, unrestricted GPT-4 access,
or access to a pedagogically-designed GPT-4 tutor. Students with unrestricted access scored
17% lower on subsequent assessments than controls, while those using the pedagogical tutor
showed no significant deficit. Mapping this to our framework: the learning ratio with versus
without AI is L1/L0 = 1− (1− µ)α. A 17% reduction (L1/L0 = 0.83) with full AI reliance
(α = 1) implies µ = 0.83; with partial reliance (α = 0.5), it implies µ = 0.66. We report
µ ≈ 0.83 as an upper bound, noting that the true value may be lower if students used AI
selectively.

Strikingly, Shen and Tamkin (2026) find a nearly identical 17% reduction in a randomized
trial with professional software developers learning a new Python library – a completely dif-
ferent population, task domain, and research team, yet the same point estimate. Developers
using AI assistance completed tasks slightly faster but scored significantly lower on compre-
hension tests, with the largest deficits on debugging questions – the skill most critical for
verifying AI-generated code. That two independent experiments in different settings yield
the same magnitude suggests µ ≈ 0.83 may be a robust central estimate for unrestricted
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AI assistance, not an artifact of any particular context. Crucially, the study identifies het-
erogeneity in how participants used AI: those who asked conceptual questions and sought
explanations retained more knowledge than those who simply delegated code generation.
This suggests µ depends not just on the task but on the interaction mode, with “Socratic”
engagement yielding higher µ than passive delegation.

Other evidence spans a wide range. Dell’Acqua (2022) document reduced cognitive effort
with AI (consistent with µ < 0.5). Budzyń et al. (2025) find endoscopist deskilling (con-
sistent with µ ≈ 0.6–0.8). Gaessler and Piezunka (2023) find chess engines accelerated skill
development (µ > 1) – but chess feedback is immediate and unambiguous (win/lose), whereas
code that runs may still contain subtle bugs, and most knowledge work lacks even this par-
tial signal. The heterogeneity across settings underscores that µ is context-dependent; we
report results for multiple values rather than defending a single estimate. Whether students
and professionals have similar µ is unclear: professionals have more at stake (potentially
lower µ due to time pressure) but also more metacognitive skill (potentially higher µ due to
self-regulation).

Baseline calibration. For other parameters, we use δ = 0.05 (5% annual depreciation),
λ = 0.15 (steady-state skill reached in ∼15 years), α = 0.5 (adoption intensity), A = 1.5 (AI
productivity), γ = 0.3 (effort concentration), and φ(h) = 0.2/(1 + h) (diminishing returns
to learning). The spillover elasticity η = 0.3 is at the upper end of empirical estimates, so
our spillover bias figures are upper bounds. Table 2 reports outcomes across the µ range.

Table 2: Outcomes by Pedagogical Quality µ

Pedagogical Quality µ

Outcome 1.0 0.9 0.7 0.5 0.3

Steady-state skill h∗/h̄ 1.00 0.95 0.88 0.80 0.68
Bias at year 10 (%) 0.0 1.6 4.1 7.0 13.2
Bias at year 20 (%) 0.0 2.7 6.8 11.0 18.5
Vintage premium at year 10 (%) 0.0 2.1 5.8 10.6 18.4
Vintage premium, steady state (%) 0.0 5.3 13.6 25.0 47.1

Note: Bias defined as (∆SC
t −∆LR

t )/∆LR
t . Vintage premium is h̄/hpostt − 1. Other parameters:

δ = 0.05, λ = 0.15, α = 0.5, η = 0.3.

Qualitative conclusions are robust: bias is positive and economically meaningful for all
µ < 1. Quantitative magnitudes vary substantially – from 1.6% bias at year 10 when µ = 0.9
to 13% when µ = 0.3.

Productivity dynamics. The measurement bias arises because state-conditional compar-
isons – which hold current skill fixed – diverge from path-based comparisons that account
for how AI shaped skill formation. The state-conditional gain ∆SC

t = Y U
t − Y U,0

t measures
AI’s value given current skill. The welfare-relevant gain ∆LR

t = Y U
t − Y NA

t compares to the
skill that would have developed without AI. As skills atrophy, ∆SC

t increasingly overstates
∆LR

t .
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Figure 1: Measurement Bias by Pedagogical Quality
Note: Bias defined as (∆SC

t −∆LR
t )/∆LR

t . Parameters: δ = 0.05, λ = 0.15, α = 0.5, A = 1.5,
γ = 0.3, φ(h) = 0.2/(1 + h), h0 = 1.

Figure 1 shows how this bias evolves for different values of µ. For µ = 0.3, the bias
reaches approximately 13% at year 10 and 18% at year 20. For µ = 0.5 (our baseline), it
reaches 7% and 11% respectively. When µ = 1, no bias arises because AI does not affect
skill formation.

Figure 2 shows transition dynamics under different parameterizations. Panel (a) plots
skill paths for varying µ: lower pedagogical quality leads to faster convergence to a lower
steady state. Panel (b) shows how the vintage premium πt = h̄/ht evolves – the wage
advantage of pre-AI cohorts grows as AI-era workers’ skills atrophy. Panel (c) illustrates the
U-shaped inequality dynamics: wage variance initially falls (short-run compression) then
rises (long-run scarcity) as pre-AI cohorts retire.

t

ht/h̄
(a) Skill Paths

1 µ = 1

µ = 0.5

µ = 0.3

Years0 20
t

πt
(b) Vintage Premium

1 µ = 1

µ = 0.5

µ = 0.3

Years0 20
t

σ2t

(c) Wage Variance

µ = 1

µ = 0.5

µ = 0.3

Years0 50

Figure 2: Transition Dynamics Under Skill Atrophy
Note: All panels show dynamics for µ ∈ {1, 0.5, 0.3}. Parameters as in Figure 1.

Sensitivity analysis. Table 3 reports bias magnitudes under alternative parameteriza-
tions. The bias is increasing in adoption intensity α (more delegation means more forgone
learning), decreasing in µ (lower pedagogical quality means faster atrophy), and increasing
in learning intensity λ (when learning-by-doing matters more, its disruption is costlier). The
bias is relatively insensitive to δ within plausible ranges, because depreciation affects both
adoption and no-adoption paths similarly.
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Table 3: Sensitivity of Measurement Bias to Parameter Values

Bias at Year 10

Parameter varied Low Baseline High Very High Extreme

µ (0.9, 0.7, 0.5, 0.3, 0.1) 1.6% 4.1% 7.0% 13.2% 22.1%
α (0.3, 0.5, 0.7, 0.8, 0.9) 6.9% 7.0% 7.2% 7.4% 7.6%
λ (0.10, 0.15, 0.20, 0.25, 0.30) 4.6% 7.0% 9.6% 12.4% 15.4%
δ (0.03, 0.05, 0.07, 0.09, 0.11) 8.4% 7.0% 6.1% 5.4% 4.9%

Note: Each row varies one parameter while holding others at baseline values (µ = 0.5, α = 0.5,
λ = 0.15, δ = 0.05). Bias defined as the percentage by which state-conditional measurement
overstates AI’s welfare contribution relative to the path counterfactual: (∆SC

t −∆LR
t )/∆LR

t .

Wage and inequality implications. The skill gap translates into wage differentials under
competitive labor markets. With wages proportional to marginal product, w(h) ∝ h in our
baseline specification. A worker whose skill falls 20% below the no-adoption counterfactual
(h∗ = 0.80h̄) earns 20% lower wages in steady state.

The vintage premium for pre-AI cohorts can be substantial. Let πt = w(h̄)/w(h∗t ) denote
the ratio of pre-AI to post-AI wages. At year 10, π10 ≈ 1.106 (a 10.6% premium); at year 20,
π20 ≈ 1.171 (a 17.1% premium). As pre-AI cohorts retire and post-AI workers converge to
h∗, this premium grows to 25% in steady state. Under imperfect substitution between skill
types, the premium can be amplified further: if pre-AI workers perform tasks that post-AI
workers cannot, scarcity rents emerge.

For aggregate inequality, the U-shaped pattern follows from the cohort dynamics. In
the short run, AI compresses the skill distribution as low-skill workers gain most from AI
augmentation while high-skill workers’ advantages erode. But as pre-AI cohorts retire and
post-AI workers’ skills converge to the lower steady state, inequality eventually widens. The
turning point depends on the retirement rate and the speed of skill atrophy; under baseline
parameters it occurs around year 15–20.

These dynamics complicate policy evaluation. A policymaker observing falling inequal-
ity in the first decade of AI adoption might conclude that AI is reducing skill gaps – the
“democratization” narrative (Autor, 2024). But this compression is temporary, driven by
the erosion of high-skill workers’ advantages rather than the elevation of low-skill workers’
capabilities. The long-run effect is a workforce with uniformly lower skills, punctuated by a
shrinking cohort of pre-AI veterans commanding scarcity premiums.

4.7 Implications for Empirical Research

Our analysis has direct implications for how AI’s productivity effects should be measured.
Table 4 summarizes which results require which assumptions; Table 5 maps empirical strate-
gies to their bias exposure.

The choice of research design fundamentally determines exposure to the biases we identify.
Within-firm comparisons – including randomized controlled trials that assign AI access to
some workers but not others – face maximum spillover bias when coworkers share mentorship
networks and training resources. The bias is minimal when comparing pre-AI to post-AI
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Table 4: Logical Dependence of Main Results

µ < 1 Spillovers Feedback

Spillover bias (Prop. 5) Yes Yes No
State-path divergence (Prop. 6) Yes No No
Feedback stabilization (Prop. 7) Yes No Yes
Skill trap (Prop. 8) Yes No No

Table 5: Empirical Designs and Bias Exposure

Design Spillover State-Path Notes

Novices, learning-
intensive

High High Maximum bias exposure

Within-firm RCT
(long-run)

High High Both biases accumulate

Within-firm RCT
(short-run)

High Low Coworkers share mentors;
skills unchanged yet

Staggered adoption
DiD

Moderate Moderate Within-industry spillovers;
timing-dependent

Pre/post AI cohort Low Low Approximates path coun-
terfactual

AI-free training peri-
ods

Low Low Directly tests skill forma-
tion

Expert users, routine
tasks

Low Low Skill formation not at stake

cohorts (which approximates the path counterfactual). Staggered adoption designs occupy
an intermediate position: they control for time-invariant worker heterogeneity but remain
vulnerable to spillover effects that operate within industries.

We emphasize that the magnitudes in Section 4.6 imply economically meaningful bias for
commonly-used research designs. A 7–13% overstatement of AI’s productivity contribution
at year 10 could substantially affect cost-benefit analyses for AI adoption, training policy,
and workforce planning. The bias grows over time, so longer-horizon evaluations face larger
distortions.

Our analysis predicts that effect sizes should decline in longer panels as skills degrade,
with faster decline in occupations where learning-by-doing is central. Cross-sectional esti-
mates should systematically exceed within-worker panel estimates from the same setting.

Data requirements for unbiased long-run estimation are demanding: direct assessments of
human capital tracked over time (not just output), longitudinal records of AI usage intensity,
measures of mentorship exposure and training environment quality, cohort identifiers relative
to AI diffusion, and indicators distinguishing “autocomplete” from “tutor” AI interfaces.
Few existing datasets contain these variables; their collection should be a priority for future
research.
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5 Welfare and Policy

Section 4 characterized how standard productivity metrics diverge from welfare-relevant
quantities when AI affects skill formation. That analysis was positive: it described what
empirical methods recover. This section asks normative questions: is there a market failure,
and if so, what policies could improve outcomes?

The link between measurement bias and welfare loss is not automatic. A firm that
recognizes AI will degrade its workers’ future productivity can optimize intertemporally,
trading current output against future human capital. If it bears the full cost of skill atrophy,
the decentralized equilibrium is constrained efficient. Welfare loss requires an externality:
human capital must have social value beyond what the adopting firm captures.

5.1 Sources of Inefficiency

We augment the baseline model to allow learning to depend on aggregate human capital
through a function ψ(H), capturing mentorship and peer effects. The microfoundation
(Appendix A.5) derives ψ from a matching model: workers who cannot solve a problem
independently seek help from colleagues, and the probability of finding a capable mentor
depends on the skill distribution. When aggregate human capital falls, mentorship becomes
scarcer and all workers’ learning suffers – including those at firms that did not adopt AI.

A social planner maximizes aggregate welfare:

W ({αt, Ht}∞t=0) =
∞∑
t=0

β̃t

∫ 1

0

Y (hi,t, αi,t;At) di (8)

where β̃ is the social discount factor and the integral aggregates output across the unit
mass of firms. The planner internalizes how adoption affects skill dynamics hi,t+1 = (1 −
δ)hi,t+λ[(1−αi,t)+µαi,t]φ(hi,t)ψ(Ht) and, when AI quality is endogenous, the training data
feedback At+1 = (1− ζ)At+ ζQ(Ht, ᾱt). Let α

D denote the decentralized adoption level and
αS the social optimum; the economy exhibits overadoption if αD > αS.

Proposition 11 (Human Capital Externality). The decentralized equilibrium exhibits over-
adoption (αD > αS) if and only if human capital spillovers are present (ψ′(H) > 0). When
spillovers are absent, the decentralized equilibrium is constrained efficient.

The “if and only if” matters. Without spillovers, firms bear the cost of their workers’
skill loss through lower future output. Spillovers break this logic: adoption imposes costs on
other firms’ workers that the adopting firm does not internalize.

Remark 5 (Discount Rate Wedge). Proposition 11 characterizes inefficiency under common
discounting (β = β̃). When the evaluator is more patient (β̃ > β), a second source of
inefficiency arises: adoption that is privately optimal can be socially excessive even without
spillovers, because firms underweight future skill losses. The wedge β̃ − β may reflect credit
constraints (workers cannot borrow against future skills), behavioral myopia, or lower social
discount rates for policy evaluation. We maintain β = β̃ in the main analysis to isolate the
role of spillovers; Appendix A analyzes the discount rate wedge.
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A second externality arises from AI’s dependence on human-generated training data.
When workers delegate to AI, two effects degrade the training signal: AI-generated content is
in-distribution, and AI-reliant humans produce lower-quality unassisted output. Widespread
adoption can degrade the technology being adopted.

Proposition 12 (Training Data Externality). With endogenous AI quality At+1 = (1 −
ζ)At + ζQ(Ht, ᾱt) where ∂Q/∂H > 0 and ∂Q/∂ᾱ < 0: individual adoption degrades future
AI quality, but atomistic firms ignore this, generating overadoption. With both externalities
present, total welfare loss exceeds the sum of individual effects.

Stack Overflow activity declined 25% within six months of ChatGPT’s release (del Rio-
Chanona et al., 2024), with newer users most likely to exit (Burtch et al., 2024). If future
models train on this degraded corpus, the technology consumes its own seed corn.

The two externalities interact. Human capital spillovers operate through mentorship
and peer effects: when workers at firm i have lower skills, workers at firm j learn less from
them. Training data externalities operate through AI quality: when workers delegate more,
future AI systems train on lower-quality data. In steady state, both channels reduce the
return to human capital investment, amplifying the inefficiency. The welfare loss from both
externalities together exceeds the sum of welfare losses from each in isolation, because each
externality amplifies the other: lower human capital degrades training data, which degrades
AI, which (through adoption responses) affects human capital further.

The magnitude of overadoption depends on the strength of spillovers. When ψ′(H) = 0
(no spillovers), decentralized adoption is constrained efficient – firms fully internalize skill
atrophy through lower future output. As spillovers strengthen, the wedge αD − αS widens.
At the baseline spillover elasticity η = 0.3, overadoption is approximately 15% of the efficient
level; at η = 0.5, it exceeds 25%.

5.2 Policy Responses

Pigouvian taxation is the textbook remedy for externalities, but the same mismeasurement
that biases productivity estimates also biases policy evaluation. We focus on quantity re-
strictions and design interventions that do not require accurate measurement of shadow
values.

Proposition 13 (Training Mandates). Consider a training mandate ρ ∈ [0, 1] requiring at
least fraction ρ of work be performed without AI, constraining adoption to α ≤ 1− ρ:

(i) A binding mandate ρ ∈ (1 − αD, 1 − αS] is welfare-improving. The first-best mandate
ρ∗ = 1− αS implements the social optimum.

(ii) Under the optimal mandate, measured productivity may fall while welfare rises.

Training mandates exist where skill maintenance is safety-critical. The FAA recommends
pilots manually fly “at least periodically, the entire departure and arrival phases”; Casner
et al. (2014) find cognitive skills for manual flying degrade with heavy automation. Med-
ical residency programs mandate minimum procedure volumes without robotic assistance;
Beane (2019) documents that residents in robot-heavy programs develop weaker unassisted
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skills. The common structure: identify pedagogically essential tasks, mandate unassisted
performance, allow technology elsewhere.

The optimal mandate ρ∗ = 1−αS varies with model parameters. Higher spillover intensity
(larger η) increases ρ∗: stronger externalities require more restriction. Lower µ increases ρ∗:
worse pedagogical quality means more harm per unit of AI use. Higher β reduces ρ∗: patient
firms self-restrain, requiring less policy intervention. When µ ≥ 1, no mandate is needed
(ρ∗ = 0) because AI augments rather than substitutes for learning.

Proposition 14 (AI Design). Let µ denote the pedagogical quality of AI. Compare Auto-
complete design (µ = µL < 1) with Socratic design (µ = µH ≥ 1):

(i) Steady-state human capital is higher under Socratic design: h∗(µH) > h∗(µL).

(ii) The welfare gain from raising µ exceeds the gain from an equivalent reduction in α.

(iii) Commercial incentives favor Autocomplete when users are myopic or do not internalize
spillovers.

The intuition for part (ii): raising µ improves learning directly, while reducing α only
reduces harm without improving pedagogical value. Part (iii) identifies a market failure in
AI design – users prefer Autocomplete because it minimizes effort, but do not internalize
the cost of skill loss.20

Why do commercial incentives favor low-µ designs? Users selecting AI tools observe im-
mediate productivity gains but not long-run skill effects. A tool that maximizes short-run
output (Autocomplete) will outcompete one that preserves learning (Socratic) in market
share, even if the latter generates higher lifetime welfare. This is analogous to the preference
for palatable over nutritious food: immediate utility dominates long-run health. The mar-
ket failure is compounded when users are employees rather than residual claimants – they
bear skill atrophy costs through lower future wages, but firms capture productivity gains.
Misaligned incentives push adoption toward low-µ tools.

Training mandates and design policy are complements, not substitutes. Mandates address
the quantity of AI use; design policy addresses its quality. The welfare gain from combining
a modest mandate (ρ = 0.2) with improved design (µ: 0.5 → 0.7) exceeds the gain from
either intervention alone. This complementarity suggests that policy should target both
margins: restrict AI use in pedagogically critical settings while incentivizing Socratic AI
design elsewhere.

Implementation faces practical challenges. Mandates require monitoring AI use, which
may be difficult when AI is embedded in standard tools. Design regulation requires defining
and measuring µ, which varies by task and user. Subsidies for high-µ AI development may
be more feasible: governments could fund research into pedagogically-aware AI systems, or
procurement rules could favor tools that preserve learning. Professional licensing bodies –
already responsible for ensuring practitioner competence – could certify AI tools for use in
training contexts.

20A natural extension would endogenize µ: AI firms choose interface design to maximize adoption, users
prefer low-µ (less effort), and the equilibrium µ∗ is inefficiently low even without spillovers. This “internality”
– users undervaluing their own future skills – is distinct from the spillover externality in Proposition 11.
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Evidence supports the design channel. The experimental results in Section 4.6 demon-
strate that interface design, not underlying capability, determines µ. Welfare-maximizing AI
would function like training wheels: substantial assistance to novices, gradually withdrawing
as competence develops.

Figure 3 illustrates. Panel (a) shows welfare as a function of adoption; the gap between
αD and αS reflects overadoption. Panel (b) compares welfare paths: laissez-faire yields
highest short-run but lowest long-run welfare; high-µ design dominates because it preserves
skills without restricting adoption.

α

W

(a) Welfare vs. Adoption

Private

Social

αDαS
t

Wt

(b) Policy Comparison

Laissez-faire

Mandate

High-µ

Figure 3: Welfare and Policy
Note: Panel (a): welfare as function of adoption; gap reflects externality. Panel (b): welfare paths
under laissez-faire, training mandates (ρ = 0.3), and high-µ AI design.

6 Conclusion

This paper identifies two structural sources of mismeasurement in AI productivity studies.
Spillover bias arises because non-users face degraded learning environments. State-path
divergence arises because current skill reflects past AI use. Both cause estimates to overstate
long-run benefits; both can reverse the sign of measured effects.

Early evidence favors µ < 1. Beyond the experimental results in Section 4.6, METR
(2025) find developers slower with AI yet believing otherwise; Budzyń et al. (2025) document
endoscopist deskilling within months.

Calibrating to experimental evidence (Bastani et al., 2025; Shen and Tamkin, 2026) yields
economically meaningful magnitudes across the µ range. At µ = 0.5, state-conditional
measurement overstates AI’s welfare contribution by 7% at year 10 and 11% at year 20;
steady-state skills fall 20% below the no-adoption counterfactual; vintage premiums reach
10.6% at year 10, growing to 25% in steady state. Biases are smaller at higher µ and vanish
when µ ≥ 1.

Our framework extends Arrow (1962)’s insight that production generates knowledge – we
show AI can sever this link. Autor (2024) envisions AI democratizing expertise; our analysis
clarifies this requires µ ≥ 1. Current autocomplete designs substitute for the struggle through
which expertise develops.

Our analysis has limitations. The key parameter µ is context-dependent and imprecisely
estimated; we report results for a range rather than defending a point estimate. Workers
might reallocate effort freed by AI to complex tasks; if reallocation were complete, µ ≥ 1.
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But evidence suggests otherwise: Dell’Acqua (2022) document that workers using AI invest
less cognitive effort overall. We also treat µ as exogenous to market structure, though
competitive pressure can favor low-µ designs.

Despite these limitations, the mismeasurement problems follow from increasingly well-
supported assumptions. The two biases require different remedies: spillover degradation is
an externality amenable to Pigouvian correction; state-path divergence is a measurement
problem requiring counterfactual-aware designs. The training data externality adds a third
channel: each firm’s adoption degrades AI quality for all future users, but atomistic firms
ignore this aggregate effect.

A priority for future research is direct estimation of µ across contexts. Panel data track-
ing AI usage and skill assessments would permit identification. Evidence from educational
settings suggests such estimation is feasible; extending it to workplaces would clarify where
substitution (µ < 1) versus augmentation (µ ≥ 1) applies.

More broadly, our analysis highlights a limitation of performance measurement in dy-
namic environments where current actions reshape future productivity. A technology can
appear increasingly indispensable even where it is not improving, because past use has de-
graded the alternative. The welfare-relevant counterfactual is not “this worker without the
technology” but “the worker this person would have become.” Standard productivity mea-
surement conflates these objects; when the technology affects skill formation, the conflation
can reverse the sign of measured effects.
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A Extensions

This appendix develops extensions of the baseline model. Each extension is self-contained
and can be read independently. We analyze firm selection dynamics, certification markets,
adaptive AI design, optimal taxation, and feedback loop stability.

A.1 Firm Dynamics and Selection

When firms differ in their discount factors, AI adoption generates selection effects that
amplify aggregate skill loss. The mechanism is simple: impatient firms adopt AI more
intensively, gain short-run productivity advantages, and capture market share from patient
firms. As patient firms shrink or exit, the output-weighted average patience in the economy
declines, leading to even more intensive adoption in the next period.

Assumption 4 (Heterogeneous Firm Patience). Firms differ in discount factors βi ∼ Fβ

distributed on [β, β̄] with 0 < β < β̄ < 1. Firms compete in a product market where market
share depends on current productivity.

Proposition 15 (Selection Effects). Under Assumption 4:

(i) dα∗

dβ
< 0: impatient firms adopt more intensively.

(ii) Let si,t denote firm i’s market share. Then d
dt
E[βi|si,t] < 0: the output-weighted average

patience declines over time.

(iii) Aggregate human capital Ht =
∫
hi,tsi,t di satisfies H

selection
t < Hno-selection

t : selection
amplifies skill atrophy.

This creates a form of “Gresham’s law” for human capital (Akerlof, 1970): just as bad
money drives out good when their quality is unobservable, impatient firms drive out patient
firms when the long-run costs of AI adoption are not immediately apparent. The selection
effect compounds the externalities analyzed in the main text. Even if individual firms cor-
rectly anticipate skill atrophy, competitive pressure forces them toward high adoption or
exit.

The result has implications for industry structure. Sectors with strong selection pressure
– high competition, low margins, short planning horizons – will experience more severe skill
atrophy than sectors where firms can afford to be patient. Professional services may be
particularly vulnerable: partnerships face pressure to maximize current-period profits for
retiring partners, creating systematic underinvestment in associate training.

A.2 Endogenous Certification and Skill Signaling

When AI makes it difficult to distinguish skilled from unskilled workers in ordinary output,
markets for skill verification may emerge (Spence, 1973). This extension analyzes how cer-
tification institutions can partially mitigate the skill trap by preserving incentives for skill
acquisition.
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Assumption 5 (Hidden Skill). Output is observable but the decomposition between AI and
human contribution is not. A worker with human capital h using AI at intensity α produces
output Y (h, α), but employers observe only Y , not h or α separately.

This assumption captures a key feature of AI-assisted work: the final product may look
identical regardless of whether it was produced by a skilled worker with minimal AI assistance
or an unskilled worker with heavy AI assistance. Traditional methods of evaluating worker
quality – observing output, checking references, reviewing portfolios – become less informa-
tive when AI can augment any worker’s apparent capabilities. The assumption connects to
the broader literature on technology and skill observability (Autor et al., 2003).

Assumption 6 (Certification Technology). A certification test measures human capital at
cost κ > 0. The test accurately reveals h but cannot be taken with AI assistance (e.g.,
proctored professional licensing exams, in-person technical interviews).

Many existing professional certifications satisfy this assumption: medical boards, bar
exams, CPA examinations, and technical interviews at major firms are conducted under
conditions that preclude AI assistance. The rise of AI may increase demand for such certifi-
cations, or prompt the creation of new ones in fields where they did not previously exist.

Proposition 16 (Certification Equilibrium). Under Assumptions 5 and 6:

(i) A separating equilibrium exists iff w(hhigh)− w(hlow) > κ.

(ii) In the trap, certification value V cert
t ≡ wC(hhigh) − wNC

t is increasing in t as average
skill h̄t falls.

(iii) Certification raises private returns to skill: ∂V
∂h

∣∣
cert

> ∂V
∂h

∣∣
no-cert

.

We emphasize that certification markets partially mitigate the skill trap by increasing
private returns to skill, but certification addresses only the information problem, not the
underlying human capital externality – it is a complement to, not substitute for, corrective
policy. The proliferation of AI-era certifications may signal market recognition of the skill
atrophy problem, even in the absence of formal policy intervention.

A.3 Adaptive Pedagogical AI Design

We analyze whether AI systems could be designed to mitigate skill atrophy by adjusting
assistance based on user skill.

Definition 4 (Adaptive AI). An adaptive AI system observes user skill h and chooses
assistance level α(h) to maximize some objective:

� A productivity-maximizing AI chooses αP (h) = argmaxα Y (h, α).

� A learning-maximizing AI chooses αL(h) = argmaxα L(α, h;µ).

� A welfare-maximizing AI chooses αW (h) to maximize the present value of output plus
human capital.
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Proposition 17 (Optimal AI Design). Let αopt(h) maximize V (h) =
∑

t β
tY (ht, αt) subject

to skill dynamics. Then:

(i) αopt(h) < αP (h) for h < hthreshold, where αP (h) = argmaxα Y (h, α).

(ii) αopt(h) ≈ αP (h) for h > hthreshold.

(iii) ∂hthreshold

∂β
> 0 and ∂hthreshold

∂µ
< 0.

The optimal AI design resembles “training wheels” that are removed as competence
develops. This contrasts with standard AI optimization, which maximizes user productivity
regardless of skill level. The model suggests that AI providers have incentives to over-assist
users (since users prefer immediate productivity), creating a market failure in AI design:
socially optimal AI would provide less assistance than privately optimal AI.

This market failure has a precise structure. Users choose AI systems based on immediate
productivity gains, which are maximized by high-α Autocomplete interfaces. But lifetime
welfare – accounting for skill formation – is maximized by lower-α Socratic interfaces during
learning phases. The wedge between user preferences and social welfare widens when users
are myopic (low β) or when AI-assisted work is particularly unformative for skill development
(low µ). The problem is analogous to the tension between processed and nutritious food:
immediate palatability conflicts with long-run health.

Concretely, contrast two interface paradigms: Autocomplete (AI provides complete so-
lutions; user accepts or rejects; µ ≈ 0) versus Socratic Tutor (AI asks guiding questions,
highlights errors without fixing them, requires user to articulate reasoning; µ potentially
> 1). Current commercial incentives favor Autocomplete because users prefer immediate
productivity (Dell’Acqua, 2022). But our analysis suggests Socratic interfaces preserve more
human capital, even if measured adoption appears lower. The experimental results of Bas-
tani et al. (2025) support this: pedagogically-designed AI tutors avoid the skill degradation
observed with unrestricted AI access.

Several implementation approaches could address this market failure. Professional li-
censing bodies could mandate minimum engagement requirements during training periods,
analogous to existing requirements for supervised practice hours. AI providers could be
required to offer “learning mode” interfaces in educational and professional development
contexts. Procurement policies for government and enterprise clients could favor AI sys-
tems with demonstrated pedagogical features. Tax incentives could subsidize development
of high-µ AI designs, treating them as investments in human capital infrastructure rather
than pure productivity tools.

A.4 Optimal Policy

This section provides formal results on optimal corrective policy when AI adoption generates
externalities through human capital spillovers and training data degradation.

A.4.1 Pigouvian Taxation

The efficient corrective policy taxes AI use at a rate equal to the marginal external cost.
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Proposition 18 (Optimal AI Tax). The optimal per-unit tax on AI adoption equals the
marginal external cost evaluated at the current state (H,A):

τ ∗ = β

[
∂W

∂H ′ − V ′(h′)

]
λ(1− µ)φ(H)ψ(H)︸ ︷︷ ︸

human capital externality

+ β
∂W

∂A′ ζ|Qα|︸ ︷︷ ︸
training data externality

The first term is the wedge between social and private marginal values of human capital, times
the marginal effect of adoption on skill formation. When spillovers are absent (θ = 0, ψ ≡ 1),
this term is zero because ∂W/∂H ′ = V ′(h′). The optimal tax is state-dependent (varying
with H and A), exhibits corrective feedback (rising as H falls because skill scarcity raises
the marginal value of remaining human capital), and evolves dynamically along equilibrium
paths.

The corrective feedback property is notable: as human capital falls, the marginal value
of remaining human capital rises, justifying higher taxes over time. This contrasts with
standard Pigouvian taxes that are typically constant.

A.4.2 Competitive Dynamics

Individual firms face competitive pressure to adopt AI even when they recognize its long-
run costs. Consider a symmetric duopoly where firm i’s market share is si = Yi/(Yi + Yj).
Each firm’s first-order condition includes a business-stealing term (∂si/∂αi) · Π > 0 that a
joint maximizer would ignore. This generates overadoption: Nash equilibrium adoption αN

exceeds the joint-profit-maximizing level αM . The competitive wedge compounds with the
externalities analyzed in the main text; Appendix B provides the formal proof.

A.5 Microfoundations for Spillovers

This section provides a formal microfoundation for the learning spillover function ψ(H)
introduced in Section 5.

Consider a population of workers indexed by i ∈ [0, 1]. Each period, worker i encounters
a problem that requires skill level s drawn from distribution F (s). If hi ≥ s, worker i solves
the problem independently and learns φ(hi). If hi < s, worker i must seek help from a
randomly matched colleague j. The match succeeds (colleague can help) if hj ≥ s. When
a match succeeds, worker i learns κφ(hi) where κ ∈ (0, 1) captures that mentored learning
is valuable but less effective than independent problem-solving. When no match succeeds,
worker i learns nothing from that problem.

The probability that a random colleague can help with a problem of difficulty s is Pr(hj ≥
s) = 1 − GH(s), where GH is the distribution of human capital in the population. For a
worker with skill hi, expected learning is:

E[Li] =

∫ hi

0

φ(hi) dF (s) +

∫ s̄

hi

κφ(hi)[1−GH(s)] dF (s) (9)

The first term is learning from problems solved independently; the second is expected learning
from mentored problems, weighted by the probability of finding a capable mentor.
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Define Ψ(H) ≡
∫ s̄

0
[1 − GH(s)] dF (s), which measures the “mentorship capacity” of the

economy – the average probability that a random worker can help with a random problem.
When aggregate human capital H is high, GH is shifted toward higher values, so 1−GH(s)
is larger for any given s, and Ψ(H) is increasing in H.

Expected learning can be written as:

E[Li] = φ(hi) [F (hi) + κΨ(H)[1− F (hi)]] (10)

Normalizing so that ψ(H̄) = 1 at the no-adoption steady state, we obtain the multiplicative
form Li = φ(hi) · ψ(H) where ψ(H) is increasing in H. The key insight is that aggregate
human capital affects individual learning through the availability of mentors: when H falls,
the probability of finding a capable mentor declines, reducing learning for all workers –
including those who do not adopt AI.

A.6 Microfoundations for Training Data Degradation

This section provides a formal microfoundation for the AI quality function Q(H, ᾱ) intro-
duced in Section 5 and characterizes the feedback loop dynamics.

AI firm’s data acquisition problem. Consider an AI firm that trains its model on a
corpus of human-generated content. Each period, the firm observes output from a population
of workers. Worker i produces content of quality qi = hi ·(1−αi)

ω, where hi is human capital,
αi is AI adoption intensity, and ω > 0 governs how AI assistance affects output quality. The
term (1−αi)

ω captures that AI-assisted output, while potentially correct, lacks the distinctive
features (edge cases, creative solutions, expert judgment) that make training data valuable.

The AI firm’s training corpus has two components: (1) human-generated content with
quality distribution Gq, and (2) AI-generated content that has “leaked” into the training
set. Let πt denote the fraction of AI-generated content in the corpus at time t. The effective
training signal is:

St = (1− πt) ·
∫
qi dFi︸ ︷︷ ︸

human quality

+πt · At−1︸︷︷︸
AI quality

(11)

where At−1 is previous-period AI quality. The AI-generated component contributes At−1

because AI can only reproduce what it already knows – it cannot generate genuinely novel
training signal.

Model collapse dynamics. Following Shumailov et al. (2024), recursive training on
AI-generated content causes quality degradation. The intuition is that each generation of AI
“compresses” the distribution, losing tail information. Formally, let f : R+ → R+ denote the
training function mapping signal quality to AI capability. If At = f(St) where St is training
signal quality, then:

At+1 = f ((1− πt)q̄t + πtAt) (12)

where q̄t =
∫
qi dFi is average human output quality. When πt is high (much AI content in

training data), the model increasingly trains on its own outputs, causing the “autophagy”
documented by Alemohammad et al. (2024).
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Connecting to skill formation. Average human output quality is:

q̄t =

∫
hi(1− αi)

ω dFi ≈ Ht · (1− ᾱt)
ω (13)

for symmetric adoption αi = ᾱ. This yields the reduced-form specification in the main text.
To be precise about timing: define Q̃(H, ᾱ) ≡ (1−π) ·H · (1− ᾱ)ω as the human contribution
to training signal quality. The full law of motion for AI quality is:

At+1 = (1− ζ)At + ζ · [(1− π)Q̃(Ht, ᾱt) + π · At] (14)

which simplifies to At+1 = (1−ζ(1−π))At+ζ(1−π)Q̃(Ht, ᾱt). The term π ·At captures AI-
generated content in the training corpus, which reflects current AI quality (the AI can only
reproduce what it already knows). For notational simplicity, the main text absorbs these
terms into a single function Q(Ht, ᾱt) satisfying ∂Q/∂H > 0 (skilled humans produce better
training data) and ∂Q/∂ᾱ < 0 (adoption degrades output quality). The contamination rate
π is itself endogenous to adoption: πt = π(ᾱt) with π

′ > 0, but we suppress this dependence
for tractability.

Feedback loop characterization. The joint dynamics of (Ht, At) form a two-dimensional
system:

Ht+1 = (1− δ)Ht + λℓ(ᾱt)φ(Ht)ψ(Ht) (15)

At+1 = (1− ζ)At + ζQ(Ht, ᾱt) (16)

where ᾱt = α∗(Ht, At) is equilibrium adoption given state (Ht, At).

Proposition 19 (Feedback Loop Stability). The system (Ht, At) has a unique stable steady
state (H∗∗, A∗∗) satisfying:

(i) H∗∗ > H∗(A0), where H
∗(A0) is the steady state with AI quality fixed at A0 = Q(H̄, 0):

the feedback loop partially protects human capital relative to the exogenous high-quality
AI benchmark.

(ii) A∗∗ < A0: equilibrium AI quality is below its potential when humans are fully skilled
and no AI is used.

(iii) The steady state (H∗∗, A∗∗) is globally stable when µ < 1 and ζ is sufficiently small (AI
quality adjusts slowly relative to human capital).

Comparative statics of the feedback loop. The feedback loop’s stabilizing effect
on levels – H∗∗ > H∗(A0) – varies with parameters. Define the stabilization gain as ∆S ≡
H∗∗ − H∗(A0) > 0, the additional human capital preserved due to endogenous AI quality
degradation. This gain is increasing in:

� ζ: faster AI quality adjustment strengthens the feedback

� ω: stronger quality degradation from AI-assisted output (larger ∂Q/∂ᾱ)

� |∂α∗/∂A|: stronger adoption response to AI quality
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The stabilization is larger when AI systems are retrained frequently on recent data, when AI-
assisted output is easily distinguishable from expert human output, and when firms strongly
reduce adoption in response to lower AI quality.

Escape from the trap. Unlike pure skill atrophy, the training data channel offers a
potential escape route: if AI firms can curate training data to exclude AI-generated content
and prioritize high-skill human output, the degradation can be arrested. Formally, if πt → 0
(perfect filtering of AI content) and the firm overweights high-h workers’ output, then At

can be stabilized or even improved. This suggests a role for data provenance systems,
human-generated content certification, and premium markets for expert-produced training
data. However, curation addresses contamination (the π channel) but not depletion (the
H channel): as human skills atrophy, the supply of high-quality human content diminishes
regardless of filtering efficacy. Technology-side fixes cannot substitute for human-side skill
preservation.

A.7 Robustness to Functional Forms

This section verifies that our main results are robust to alternative functional form specifi-
cations.

Alternative learning functions. The baseline model assumes a monotonically de-
creasing learning capacity function φ(h). An alternative specification is a hump-shaped
function that peaks at intermediate skill levels, capturing that complete novices may lack
the framework to learn efficiently. All qualitative results survive under the hump-shaped
specification: when µ < 1, higher adoption still reduces steady-state human capital because
∂L/∂α = (µ − 1)φ(h) < 0. The steady-state characterization requires restricting attention
to h∗ > ĥ (above the peak) for stability, but the comparative statics retain their signs.

Alternative AI capability functions. The baseline assumes g(j) is monotonically
decreasing in j, so AI is best at routine tasks. Consider instead a U-shaped function where
AI is capable at both routine tasks (low j) and highly structured complex tasks (high j), but
struggles with intermediate judgment-intensive tasks. The optimal adoption rule becomes
more complex (potentially non-convex), but the core mechanism – that delegation reduces
learning when µ < 1 – is unchanged. The skill trap can still arise whenever AI handles tasks
that would otherwise develop human expertise.

Alternative spillover specifications. Replace the multiplicative specification Li =
ℓ(αi)φ(hi)ψ(H) with an additive form Li = ℓ(αi)φ(hi) + θLH, where θL > 0 captures direct
knowledge spillovers. The overadoption result (Proposition 11) continues to hold: individual
firms ignore their contribution to H, so private adoption exceeds social optima. The quan-
titative magnitude of the wedge changes, but the qualitative inefficiency result is robust.

Discrete tasks. Replace the continuum of tasks with a finite set {1, 2, . . . , J}. Workers
choose which tasks to delegate rather than a continuous adoption intensity. The analysis
becomes combinatorially more complex, but for large J the continuous approximation is
accurate. For small J , the model admits multiple equilibria with different task allocations,
but each equilibrium exhibits the same qualitative properties: delegation of learning-intensive
tasks reduces skill accumulation when AI substitutes for learning.

Heterogeneous pedagogical quality µ(h). The baseline model assumes a constant
µ, but pedagogical quality plausibly varies with skill level. We analyze two cases:
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The learning function becomes L(α, h) = [1 − (1 − µ(h))α]φ(h). Differentiating the
steady-state condition δh∗ = λ[1− (1− µ(h∗))α]φ(h∗) with respect to α:

dh∗

dα
=

−(1− µ(h∗))λφ(h∗)

δ − λ[1− (1− µ(h∗))α]φ′(h∗)− λαµ′(h∗)φ(h∗)

Note the critical minus sign before the µ′(h∗) term, arising from implicit differentiation of
(1− µ(h∗))α with respect to h∗.

Case 1: µ′(h) > 0 (AI is more pedagogical for experts). This captures the intuition that
novices may lack the framework to learn from AI outputs, while experts can critically evaluate
and integrate AI suggestions. When µ′(h∗) > 0, the term−λαµ′(h∗)φ(h∗) is negative, making
the denominator smaller and |dh∗/dα| larger. Skill atrophy is amplified : as skills fall, AI
becomes less pedagogical (since µ falls with h), which accelerates further skill loss. This
creates a destabilizing force that deepens the trap.

Case 2: µ′(h) < 0 (AI is more pedagogical for novices). This captures the intuition
that AI scaffolding is most helpful for beginners, while advanced learners need unassisted
struggle. Now the term −λαµ′(h∗)φ(h∗) is positive, making the denominator larger and
|dh∗/dα| smaller. Skill atrophy is dampened : as skills fall, AI becomes more pedagogical,
reducing the marginal harm from adoption. This creates a stabilizing force that limits the
depth of the trap but does not eliminate it: as long as µ(h∗) < 1 at the equilibrium skill
level, the trap can still occur.

The key insight is that allowing µ(h) to vary introduces a feedback between skill level
and the learning effect of adoption, but does not qualitatively change the main results unless
µ(h) ≥ 1 for all h (which would eliminate skill atrophy entirely). The scalar µ in our baseline
model can be interpreted as the value at the relevant equilibrium skill level: µ ≡ µ(h∗).

Upper-tail spillover specification. As noted in the main text, the microfoundation
in Appendix A.5 implies spillovers that depend on the full skill distribution, not merely the
mean. We verify robustness to an alternative specification where spillovers depend on the
upper tail:

ψ̃(GH) = ψ0 + ψ1 · [1−GH(h
threshold)]

where hthreshold is a fixed mentorship threshold and 1−GH(h
threshold) is the fraction of workers

above it. As AI adoption causes skills to atrophy, more workers fall below the threshold,
reducing ψ̃ and impairing learning for all workers. The comparative statics are identical to
the mean-based specification: ∂ψ̃/∂α < 0 when µ < 1, generating overadoption.
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B Proofs

This appendix provides formal proofs for all results. Section B.1 states and proves technical
lemmas; Section B.2 proves the main results in the order they appear in the text (with
one exception: the skill trap proof appears before the spillover and state-path divergence
proofs because some corollaries of the latter reference the trap characterization). We begin
by stating the regularity conditions maintained throughout the proofs.

Assumption 7 (Regularity). The following conditions hold at steady state:

(i) Interior steady state: h∗ ∈ (0, h̄), where h̄ is the no-adoption steady state.

(ii) Stability: δ > λℓ(α∗)|φ′(h∗)|, ensuring |T ′(h∗)| < 1.

(iii) Curvature dominance: |Yαα(h∗, α∗)| > β|V ′(h∗)|λ|1− µ||φ′(h∗)|.

(iv) Monotone policy: dα∗/dh has constant sign on (0, h̄].

These conditions ensure existence, uniqueness, and stability of equilibrium. Condition (i)
places the steady state in the economically relevant region. Condition (ii) is standard local
stability. Condition (iii) ensures static concavity dominates dynamic effects in the FOC.
Condition (iv) rules out pathological non-monotonic policy functions.

Sufficient primitive conditions. Conditions (i)–(iv) hold when: (a) δ is bounded
away from zero (skill depreciates); (b) φ is Lipschitz with |φ′(h)| ≤ M for some M < ∞;
(c) β < 1/(1 + δ) (firms are not too patient); and (d) |g′(α)| is bounded away from zero
(AI capability declines with task complexity). Under these primitives, the set of parameter
values violating (i)–(iv) has measure zero.

B.1 Technical Lemmas

The Firm’s Problem. Recall from Section 2 that the firm maximizes (4) subject to the
human capital law of motion (2), with the value function satisfying the Bellman equation
(5).

Lemma 2 (Optimal Effort Allocation). Given adoption intensity α ∈ [0, 1), the worker
optimally spreads effort uniformly across worker-performed tasks: e(j) = 1/(1 − α) for
j ∈ (α, 1]. This yields worker output h(1− α)1−γ.

Proof. The worker chooses effort allocation e(j) for j ∈ (α, 1] to maximize
∫ 1

α
h · e(j)γ dj

subject to
∫ 1

α
e(j) dj = 1. The FOC implies constant effort e(j) = 1/(1 − α). Total output

is
∫ 1

α
h[1/(1− α)]γ dj = (1− α) · h · (1− α)−γ = h(1− α)1−γ.

Lemma 3 (Output and Learning Properties). The output function Y (h, α;A) = A ·G(α) +
h(1 − α)1−γ is linear in h, strictly concave in α for h > 0, and satisfies ∂Y/∂α → −∞ as
α → 1−. The learning effect satisfies ∂L/∂α = (µ− 1)φ(h), which is negative iff µ < 1.

Proof. Concavity of Y : Yαα = Ag′(α) − h(1 − γ)γ(1 − α)−γ−1 < 0 since g′(α) < 0. As
α → 1, (1 − α)−γ → ∞, so Yα → −∞. The learning derivative follows directly from
L(α, h;µ) = [(1− α) + µα]φ(h).
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Lemma 4 (Value Function Properties). The value function V exists, is unique, continuous,
strictly increasing, concave, and continuously differentiable on (0,∞).

Proof. Human capital is bounded above by h̄. Existence and uniqueness follow from Theorem
4.6 (Contraction Mapping) of Stokey and Lucas (1989); differentiability from Benveniste-
Scheinkman (Theorem 4.11).

Lemma 5 (Optimal Adoption is Interior). Under Assumption 3, α∗(h) ∈ (0, 1) for all
h ∈ (0, h̄].

Proof. At α → 1: ∂Y/∂α→ −∞ (Lemma 3), so α∗ < 1.
At α = 0: the full marginal value of adoption in the dynamic problem is

∂

∂α
{Y (h, α) + βV (h′)}

∣∣∣∣
α=0

= [A · g(0)− h(1− γ)] + βV ′(h′)λ(µ− 1)φ(h)

The first bracket is the static marginal benefit; the second term is the discounted marginal
learning cost (negative when µ < 1). At h = h̄ with α = 0, we have h′ = h̄ (steady
state), so V ′(h′) = V̄ ′. Assumption 3 ensures the static benefit exceeds the dynamic cost:
A · g(0) − h̄(1 − γ) > βV̄ ′λ(1 − µ)φ(h̄). For h < h̄, the static benefit A · g(0) − h(1 − γ) is
larger (since h is smaller), while the dynamic cost βV ′(h′)λ(1 − µ)φ(h) is bounded. Thus
the total marginal value at α = 0 is positive for all h ∈ (0, h̄], implying α∗ > 0.

Lemma 6 (Stability Characterization). At a steady state h∗, local stability holds when
|T ′(h∗)| < 1, where T ′(h∗) = (1 − δ) + λℓ(α∗)φ′(h∗) + λℓ′(α∗)dα

∗

dh
φ(h∗). Under Assump-

tion 7(ii)–(iv), a sufficient condition is δ − λℓ(α∗)|φ′(h∗)| > 0: the stability term dominates
the policy feedback term, which is bounded under curvature dominance.

Proof. The transition is T (h) = (1− δ)h+ λℓ(α∗(h))φ(h). Differentiating:

T ′(h) = (1− δ) + λℓ(α∗(h))φ′(h) + λℓ′(α∗(h))
dα∗

dh
φ(h)

The first two terms give (1 − δ) + λℓ(α∗)φ′(h∗). Since φ′(h∗) < 0 by Assumption 1, this is
less than (1 − δ) < 1. The third term – the policy feedback – has magnitude bounded by
Assumption 7(iii)–(iv): curvature dominance ensures |dα∗/dh| is small, and monotone policy
ensures it has constant sign. Combining, |T ′(h∗)| < 1 when δ − λℓ(α∗)|φ′(h∗)| > 0.

Lemma 7 (Convergence to Steady State). Under optimal policy with µ < 1, if h0 ∈ (0, h̄],
then ht → h∗ ∈ (0, h̄) as t→ ∞.

Proof. Define the transition map T (h) = (1−δ)h+λℓ(α∗(h))φ(h) where α∗(h) is the optimal
policy. A steady state h∗ satisfies T (h∗) = h∗, i.e., δh∗ = λℓ(α∗)φ(h∗).

Step 1: Existence and location of steady state. By Lemma 1, there exists a unique
h∗ > 0 satisfying the stationarity condition. Under Assumption 7(i), h∗ ∈ (0, h̄).

Step 2: Local stability. The derivative T ′(h∗) = (1−δ)+λℓ(α∗)φ′(h∗)+λℓ′(α∗)dα
∗

dh
φ(h∗).

Under Assumption 7(ii), (1 − δ) + λℓ(α∗)φ′(h∗) < 1. The third term is bounded under As-
sumption 7(iii)–(iv). Thus |T ′(h∗)| < 1, establishing local asymptotic stability.
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Step 3: Global convergence from (0, h̄]. For h ∈ (0, h̄], we show T (h)−h has constant
sign on each side of h∗. At h = h̄: T (h̄) = (1 − δ)h̄ + λℓ(α∗(h̄))φ(h̄). Since ℓ(α) < 1 when
α > 0 and µ < 1, and since δh̄ = λφ(h̄) defines h̄, we have T (h̄) < h̄. At h∗: T (h∗) = h∗.
By continuity and the intermediate value theorem, for h ∈ (h∗, h̄], we have T (h) < h, so the
sequence is decreasing. Local stability then implies ht → h∗.

Lemma 8 (Jacobian Non-Singularity). Under Assumption 7, at an interior steady state
(h∗, α∗) with µ < 1, the Jacobian of the steady-state system is non-singular with det(J) ̸= 0.

Proof. The steady-state system comprises the stationarity condition F 1(h, α) ≡ δh−λℓ(α)φ(h) =
0 and the FOC F 2(h, α) ≡ Yα + βV ′(h′)λ(µ− 1)φ(h) = 0. The Jacobian is:

J =

(
∂F 1/∂h ∂F 1/∂α
∂F 2/∂h ∂F 2/∂α

)
=

(
Dh Dhα

Dαh Dα

)
where:

� Dh = δ − λℓ(α)φ′(h) > 0 by Assumption 7(ii)

� Dhα = λ(1− µ)φ(h) > 0 since µ < 1 and φ(h) > 0

� Dα = Yαα + βV ′′(h′)[λ(µ− 1)φ(h)]2

� Dαh = −(1− γ)(1− α)−γ − β[V ′′(h′)λ(1− µ)φ(h) + V ′(h′)λ(1− µ)φ′(h)]∂h
′

∂h

Signing Dα: The first term Yαα = Ag′(α)−h(1−γ)γ(1−α)−γ−1 < 0 by strict concavity
of output in α. The second term βV ′′(h′)[λ(µ − 1)φ(h)]2 ≤ 0 by concavity of V . Thus
Dα < 0 unconditionally – no additional assumption is needed. (Note: since we take a partial
derivative with respect to α holding h fixed, the term φ(h) does not contribute a φ′(h)
factor.)

Signing Dαh: We have Dαh = −(1− γ)(1− α)−γ − β[V ′′(h′)λ(1− µ)φ(h) + V ′(h′)λ(1−
µ)φ′(h)]∂h

′

∂h
. The first term −(1−γ)(1−α)−γ < 0. For the bracketed expression: V ′′(h′) ≤ 0

by concavity, λ(1 − µ)φ(h) > 0 when µ < 1, and V ′(h′)λ(1 − µ)φ′(h) has sign (positive) ·
(positive) · (negative) < 0 since φ′(h) < 0 by Assumption 1. Thus the bracket is negative.
Since ∂h′/∂h = (1−δ)+λℓ(α)φ′(h) > 0 under Assumption 7(ii), the second term is positive.
The sign of Dαh depends on which effect dominates.

Non-singularity of J: We have det(J) = DhDα −DhαDαh. The first term DhDα < 0
since Dh > 0 and Dα < 0. The second term equals Dhα ·Dαh where Dhα > 0.

Under Assumption 7(iv) (monotone policy), Dαh has constant sign on (0, h̄]. If Dαh ≤ 0,
then −DhαDαh ≥ 0, so det(J) = (negative) + (non-negative) < 0. If Dαh > 0, then
−DhαDαh < 0, so det(J) < 0 provided |DhDα| > |DhαDαh|. This latter condition is implied
by Assumption 7(iii): when static curvature dominates, the cross-partial products are second-
order relative to |Yαα|.

In either case, det(J) ̸= 0 and the implicit function theorem applies.
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B.2 Proofs of Main Results

Proposition 1 (Role of Pedagogical Quality).
The firm’s Bellman equation is V (h) = maxα{Y (h, α;A) + βV (h′)} where h′ = (1− δ)h +
λL(α, h;µ). The first-order condition for an interior α ∈ (0, 1) is:

∂Y

∂α
+ βV ′(h′) · ∂h

′

∂α
= 0

Substituting the derivatives and rearranging:

A · g(α)− h(1− γ)(1− α)−γ = βV ′(h′) · λ(1− µ)φ(h)

The LHS is the marginal output benefit; the RHS is the marginal learning cost. Since
V ′(h′) > 0, λ > 0, and φ(h) > 0, the marginal learning cost is positive iff µ < 1. For part (i):
when µ < 1, firms face a positive marginal cost through learning. For part (ii): when µ = 1,
the RHS is zero. For part (iii): when µ > 1, the RHS is negative. For the comparative static
∂α∗/∂µ > 0: by the implicit function theorem, dα∗/dµ = βV ′(h′)λφ(h)/(−Yαα + · · · ) > 0.
□

Lemma 1 (Steady-State Human Capital Function).
(i) Define Φ(h;α) ≡ δh − λℓ(α)φ(h) where ℓ(α) = 1 − (1 − µ)α. For existence, we require
ℓ(α) > 0. When µ ≥ 0, we have ℓ(α) ≥ 1−α > 0 for all α ∈ [0, 1). When µ ∈ (−1, 0), we have
ℓ(α) > 0 iff α < α0 ≡ 1/(1−µ) ∈ (1/2, 1). For α ≥ α0 with µ < 0, effective learning becomes
zero or negative, and no positive steady state exists – skills decline without bound. In what
follows, we restrict attention to (µ, α) pairs satisfying ℓ(α) > 0; this holds automatically
when µ ≥ 0 (the empirically relevant case) or when adoption is not too extreme.

Under this restriction, at h = 0: Φ(0;α) = −λℓ(α)φ(0) < 0 since ℓ(α) > 0 and φ(0) >
0. As h → ∞: Φ(h;α) → ∞ since δh grows without bound while λℓ(α)φ(h) → 0 by
Assumption 1. By continuity and the intermediate value theorem, at least one solution
exists.

For uniqueness, note that φ′(h) < 0 for all h > 0 by Assumption 1, so ∂Φ
∂h

= δ −
λℓ(α)φ′(h) > δ > 0. Thus Φ is strictly increasing for all h > 0. Since Φ(h) → −λℓ(α)φ(0) <
0 as h → 0+ (using φ(0) > 0) and Φ(h) → ∞ as h → ∞, by continuity there is exactly one
crossing of zero.

(ii) At α = 0: ℓ(0) = 1, so (6) becomes δh = λφ(h), which defines h̄.
(iii)–(iv) Implicitly differentiating (6):

dh∗

dα
=

λℓ′(α)φ(h∗)

δ − λℓ(α)φ′(h∗)

The denominator is positive at a stable steady state. Since ℓ′(α) = −(1−µ), the numerator
has sign opposite to (1− µ). Thus dh∗

dα
< 0 when µ < 1 and dh∗

dα
≥ 0 when µ ≥ 1. □

Proposition 2 (Steady-State Characterization).
The characterization follows directly from the properties of the steady-state human capital
function h∗(α) established in Lemma 1. □
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Proposition 3 (Uniqueness and Global Stability).
Part (i): Existence. Define the equilibrium system as the intersection of two curves in

(h, α) space:

� The stationarity locus S: pairs (h, α) satisfying δh = λℓ(α)φ(h).

� The optimal policy P : pairs (h, α∗(h)) where α∗(h) solves the firm’s problem.

For the stationarity locus S: fixing α, there exists a unique h(α) by Lemma 1. As α
increases (with µ < 1), ℓ(α) = 1− (1−µ)α decreases, so stationarity requires lower h. Thus
hS(α) is decreasing with hS(0) = h̄ and hS(α) → 0 as α → 1.

For the optimal policy P : by Lemma 5, at each h > 0 there exists an interior optimal
adoption α∗(h) ∈ (0, 1). By Assumption 7(iv), α∗(h) is monotone decreasing in h when
µ < 1: higher skill reduces the marginal benefit of AI relative to the learning cost.

Both loci are decreasing in (h, α) space. However, they have different boundary
behavior that guarantees a unique crossing:

� At h close to 0: The stationarity condition δh = λℓ(α)φ(h) with φ(0) > 0 requires α
close to 1/(1 − µ) > 1 for µ ∈ (0, 1), which is outside [0, 1]. Thus for any α ∈ [0, 1],
stationarity requires h > 0. Meanwhile, the optimal policy has α∗(h) → αmax < 1 as
h→ 0 (AI remains valuable even at low skill).

� At h = h̄: Stationarity with α = 0 gives δh̄ = λφ(h̄), which defines h̄. Thus hS(0) = h̄.
The optimal policy has α∗(h̄) > 0 by Assumption 3.

At α = 0: stationarity gives h = h̄, while optimal adoption at h̄ is α∗(h̄) > 0. Thus at
this boundary, αP > αS. As h decreases from h̄, both αS(h) and αP (h) increase (moving
along their respective decreasing curves in the other direction), but at different rates. Since
αS must reach infeasibly high values as h → 0 while αP remains bounded, and since both
are continuous, they must cross exactly once.

Part (ii): Uniqueness. The Jacobian non-singularity established in Lemma 8 implies
local uniqueness via the implicit function theorem. For global uniqueness, note that any
steady state must lie on both loci, and the boundary analysis above shows there is exactly
one such point.

Part (iii): Global Stability. By Lemma 7, for any h0 ∈ (0, h̄], the skill path ht → h∗

as t → ∞. By continuity of the optimal policy α∗(h), the adoption path αt = α∗(ht) →
α∗(h∗) = α∗.

Part (iv): Monotonicity of Optimal Paths. Suppose µ < 1 and h0 = h̄. We show
{ht} is strictly decreasing and {αt} is strictly increasing.

Step 1: The policy function is strictly decreasing. By Assumption 7(iv), dα∗/dh has
constant sign. We show this sign is negative when µ < 1. The FOC for optimal adoption is
Yα(h, α)+βV

′(h′) ·∂h′/∂α = 0. The cross-partial ∂2/∂h∂α of the Bellman objective includes
the term −(1 − γ)(1 − α)−γ < 0 from Yhα. Since higher h raises output more when α is
lower, and since the dynamic cost βV ′(h′)λ(1− µ)φ(h) is positive when µ < 1, the optimal
response to higher h is lower α. Thus dα∗/dh < 0.
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Step 2: Skills are strictly decreasing. At h0 = h̄, the optimal adoption α0 = α∗(h̄) > 0
by Assumption 3. With α0 > 0 and µ < 1, learning is L0 = ℓ(α0)φ(h̄) < φ(h̄) since
ℓ(α) = 1− (1− µ)α < 1. But h̄ is defined by δh̄ = λφ(h̄), so:

h1 = (1− δ)h̄+ λL0 < (1− δ)h̄+ λφ(h̄) = (1− δ)h̄+ δh̄ = h̄

Thus h1 < h0. By induction, ht+1 < ht for all t until ht = h∗.
Step 3: Adoption is strictly increasing. Since αt = α∗(ht) and dα∗/dh < 0, the se-

quence {αt} inherits the opposite monotonicity from {ht}. As ht decreases, αt increases.
Convergence ht → h∗ implies αt → α∗. □

Necessity of Substitution for Skill Atrophy.
When µ ≥ 1, the learning function satisfies ∂L

∂α
= (µ − 1)φ(h) ≥ 0 by Lemma 3. Higher

adoption does not reduce learning – it either leaves learning unchanged (µ = 1) or increases
it (µ > 1).

Consider the steady-state condition δh∗ = λ[1− (1− µ)α∗]φ(h∗). When µ ≥ 1, the term
[1− (1− µ)α∗] ≥ 1 for all α∗ ∈ [0, 1]. Thus:

δh∗ ≥ λφ(h∗)

with equality only when µ = 1 (for any α∗) or when µ > 1 and α∗ = 0.
The right side λφ(h) intersects δh at the no-adoption steady state h̄. Since δh∗ ≥ λφ(h∗),

the steady-state human capital must satisfy h∗ ≥ h̄. Human capital cannot fall below the
no-adoption level regardless of adoption intensity.

By Definition 3, the skill trap requires Yt < Y NA
t for large t. With h∗ ≥ h̄, long-run

human capital under adoption weakly exceeds the no-adoption level. For the trap to be
impossible, we need Y ∗ ≥ Y NA = h̄.

Now, Y ∗ = A · G(α∗) + h∗(1 − α∗)1−γ. Note that (1 − α∗)1−γ < 1 for α∗ > 0 since
1− γ ∈ (0, 1). Since h∗ ≥ h̄ and (1− α∗)1−γ < 1, we have h∗(1− α∗)1−γ < h∗. For Y ∗ ≥ h̄,
it suffices to show A ·G(α∗) ≥ h̄− h∗(1− α∗)1−γ. Since h∗ ≥ h̄, we have:

h̄− h∗(1− α∗)1−γ ≤ h̄− h̄(1− α∗)1−γ = h̄[1− (1− α∗)1−γ]

Thus it suffices that A·G(α∗) ≥ h̄[1−(1−α∗)1−γ]. This condition is implied by Assumption 3
when µ ≥ 1: Assumption 3 ensures AI is attractive at the margin, and with µ ≥ 1 the
dynamic skill cost is non-positive, so the inequality holds a fortiori. Thus Y ∗ ≥ h̄ = Y NA,
and the trap cannot exist when µ ≥ 1. □

Proposition 4 (Comparative Statics).
By the implicit function theorem, ∂x

∂θi
= −J−1 ∂F

∂θi
for each parameter θi. By Lemma 8,

det(J) ̸= 0. Under the conditions established in that lemma’s proof, det(J) < 0.
(i) Effect of A: ∂F1

∂A
= 0 and ∂F2

∂A
= g(α∗) > 0. Computing:

∂α∗

∂A
=
Dh · g(α∗)

− det(J)
> 0

where Dh = δ − λℓ(α∗)φ′(h∗) > 0. From stationarity: ∂h∗

∂A
= −Dhα

Dh

∂α∗

∂A
< 0.
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(ii) Effect of β: ∂F1

∂β
= 0 and ∂F2

∂β
= −V ′(h∗)λ(1−µ)φ(h∗) < 0. By analogous calculation,

∂α∗

∂β
< 0 and ∂h∗

∂β
> 0. This uses the fact that V ′(h∗) > 0 (human capital is valuable) and

that V ′(h∗) is increasing in β – more patient firms place higher marginal value on future
human capital. Formally, from the envelope condition V ′(h) = (1 − α)1−γ + βV ′(h′)[(1 −
δ) + λℓ(α)φ′(h)], higher β raises V ′(h) at each h.

(iii) Effect of λ: Both partial derivatives are negative when µ < 1. Cramer’s rule gives
∂h∗

∂λ
> 0.
(iv) Effect of µ: For ∂α∗/∂µ > 0: higher µ reduces the learning cost term (1− µ)φ(h)

in the FOC, so firms adopt more.
For ∂h∗/∂µ: implicitly differentiate the stationarity condition δh∗ = λ[1−(1−µ)α∗]φ(h∗):

δ
∂h∗

∂µ
= λα∗φ(h∗) + λ[1− (1− µ)α∗]φ′(h∗)

∂h∗

∂µ
− λ(1− µ)φ(h∗)

∂α∗

∂µ

Solving:

∂h∗

∂µ
=
λα∗φ(h∗)− λ(1− µ)φ(h∗)∂α

∗

∂µ

δ − λℓ(α∗)φ′(h∗)

The denominator is positive by Assumption 7. The numerator has two terms:

� Direct effect: λα∗φ(h∗) > 0. Higher µ means more learning per unit of AI-assisted
work.

� Indirect effect: −λ(1−µ)φ(h∗)∂α∗

∂µ
< 0. Higher µ induces more adoption (∂α∗/∂µ > 0),

which reduces learning.

The sign of ∂h∗/∂µ is thus ambiguous in general. However, ∂h∗/∂µ > 0 when the direct
effect dominates:

α∗ > (1− µ)
∂α∗

∂µ

This holds when adoption responses to µ are moderate. In our calibrations with µ ∈ [0.3, 0.5]
and α∗ ≈ 0.5, this condition is satisfied and ∂h∗/∂µ > 0. Intuitively, when µ is substantially
below 1, the direct benefit of better learning quality outweighs the indirect cost of induced
adoption. □

Proposition 8 (Existence of Skill Trap).
We verify each condition of Definition 3 and establish uniqueness of β̄.

Step 1: Condition (T1) holds. By Assumption 3, A > h̄(1 − γ). By Lemma 5,
α∗(h) > 0 for all h ∈ (0, h̄]. Since h0 ≤ h̄ and human capital remains bounded in (0, h̄] along
any equilibrium path (Lemma 4), we have αt > 0 for all t.

Step 2: Short-run gain. At t = 0, consider the adoption decision. No-adoption output
is Y NA

0 = h0. With adoption α0 > 0:

Y0 = A ·G(α0) + h0(1− α0)
1−γ

Differentiating at α0 = 0: ∂Y0/∂α|α=0 = A · g(0) − h0(1 − γ) = A − h0(1 − γ) > 0 by
Assumption 3. Since the firm chooses α∗

0 > 0 (Lemma 5) and payoff is strictly concave in α
(Lemma 3), we have Y0 > Y NA

0 .
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Step 3: Monotonicity of steady-state output in β. Define W (α) ≡ A · G(α) +
h∗(α)(1 − α)1−γ as steady-state output as a function of adoption. We show W ′(α∗) < 0.
Throughout, we restrict attention to interior steady states where the policy correspondence
α∗(h) is single-valued and continuously differentiable; this is guaranteed under Assump-
tions 3–7 by Lemma 5 and the implicit function theorem.

From the stationarity condition δh∗ = λℓ(α)φ(h∗), implicit differentiation yields:

dh∗

dα
=

−λ(1− µ)φ(h∗)

δ − λℓ(α)φ′(h∗)
(17)

The denominator is positive at a stable steady state (Lemma 6). When µ < 1, the numerator
is negative, so dh∗/dα < 0.

Differentiating W :

W ′(α) = Ag(α) +
dh∗

dα
(1− α)1−γ − h∗(1− γ)(1− α)−γ (18)

From the steady-state FOC: Ag(α∗) = h∗(1− γ)(1−α∗)−γ + βV ′(h∗)λ(1− µ)φ(h∗). Substi-
tuting:

W ′(α∗) = h∗(1− γ)(1− α∗)−γ + βV ′(h∗)λ(1− µ)φ(h∗)

+
dh∗

dα
(1− α∗)1−γ − h∗(1− γ)(1− α∗)−γ

= βV ′(h∗)λ(1− µ)φ(h∗)︸ ︷︷ ︸
>0

+
dh∗

dα
(1− α∗)1−γ︸ ︷︷ ︸

<0

The first term is positive (V ′(h∗) > 0 by Lemma 4, and all other factors positive when
µ < 1); the second is negative since dh∗/dα < 0. The sign of W ′(α∗) is thus ambiguous in
general. To resolve this ambiguity, we derive V ′(h∗) explicitly.

Derivation of V ′(h∗). At steady state, the envelope theorem applied to the Bellman
equation (5) yields:

V ′(h) =
∂Y

∂h
+ βV ′(h′) · ∂h

′

∂h

where ∂Y/∂h = (1− α)1−γ and ∂h′/∂h = (1− δ) + λℓ(α)φ′(h). At steady state h′ = h∗, so:

V ′(h∗) = (1− α∗)1−γ + βV ′(h∗) [(1− δ) + λℓ(α∗)φ′(h∗)]

Solving for V ′(h∗):

V ′(h∗) =
(1− α∗)1−γ

1− β(1− δ)− βλℓ(α∗)φ′(h∗)
(19)

The denominator can be rewritten as (1 − β) + β[δ − λℓ(α∗)φ′(h∗)]. Since φ′(h∗) < 0 by
Assumption 1, the term δ − λℓ(α∗)φ′(h∗) > δ > 0, so the denominator is strictly positive.

Substituting into W ′(α∗). Recall from (17):

dh∗

dα
=

−λ(1− µ)φ(h∗)

δ − λℓ(α∗)φ′(h∗)
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Substituting (19) and this expression into W ′(α∗):

W ′(α∗) =
β(1− α∗)1−γλ(1− µ)φ(h∗)

(1− β) + β[δ − λℓ(α∗)φ′(h∗)]
− λ(1− µ)φ(h∗)(1− α∗)1−γ

δ − λℓ(α∗)φ′(h∗)

Factoring out λ(1− µ)φ(h∗)(1− α∗)1−γ > 0:

W ′(α∗) = λ(1− µ)φ(h∗)(1− α∗)1−γ

[
β

(1− β) + βΓ
− 1

Γ

]
where Γ ≡ δ − λℓ(α∗)φ′(h∗) > 0. The term in brackets equals:

βΓ− (1− β)− βΓ

Γ[(1− β) + βΓ]
=

−(1− β)

Γ[(1− β) + βΓ]
< 0

since all terms in the denominator are positive.
Therefore W ′(α∗) < 0 unconditionally at any stable interior steady state with µ <

1. The sign does not require any additional assumption beyond those already imposed
(Assumptions 3–7).

Remark 6. The monotonicity result W ′(α∗) < 0 does not require any additional assumption
beyond Assumptions 3–7. The impatience condition in Remark 7 ensures well-behaved
comparative statics but is not needed for the sign of W ′(α∗).

Remark 7 (Impatience Condition). The following condition, while not required forW ′(α∗) <
0, ensures well-behaved comparative statics: δ−λℓ(α∗)φ′(h∗) < (1−β)/β. This holds when
firms are sufficiently impatient relative to depreciation. A sufficient primitive condition is
β < 1/(1 + δ + λm̄) where m̄ = suph |φ′(h)|.

By Proposition 4(ii), dα∗/dβ < 0. Combined with W ′(α∗) < 0:

dY ∗

dβ
= W ′(α∗) · dα

∗

dβ
= (negative)× (negative) > 0

Steady-state output is strictly increasing in firm patience.
Step 4: Existence and uniqueness of β̄. Define Ψ(β) ≡ Y ∗(β)− h̄. From Step 3, Ψ

is strictly increasing.
Limit as β → 1: We show α∗(β) → 0 and hence Y ∗(β) → h̄. From the steady-state

FOC:
Ag(α∗)− h∗(1− γ)(1− α∗)−γ = βV ′(h∗)λ(1− µ)φ(h∗)

As β → 1, the RHS grows (patient firms weight future skills heavily). For the FOC to hold,
either α∗ → 0 (reducing the LHS) or h∗ → h̄ (increasing the skill cost term). Under µ < 1,
the stationarity condition δh∗ = λℓ(α∗)φ(h∗) with ℓ(α) = 1− (1− µ)α implies that h∗ → h̄
requires α∗ → 0 (since δh̄ = λφ(h̄) defines h̄). Thus both occur jointly: α∗(β) → 0 and
h∗(β) → h̄ as β → 1. Consequently Y ∗(β) → h̄, so Ψ(1−) = 0.

As β → 0: myopic firms maximize current output. The static FOC Ag(α) = h(1−γ)(1−
α)−γ determines adoption. As β → 0, firms ignore future skill costs, so α∗(β) → αmyopic

where αmyopic maximizes Y (h, α) for fixed h. Since Yα → −∞ as α → 1 (Lemma 3),
αmyopic < 1. However, as β → 0, the steady-state skill h∗(α) falls toward zero because the
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firm does not internalize skill atrophy. Specifically, from the stationarity condition, h∗ → 0
as α∗ → ᾱ where ℓ(ᾱ)φ(0) balances depreciation at a very low skill level. With h∗ ≈ 0 and
α∗ < 1, we have Y ∗ ≈ A · G(α∗). By condition (ii), A · G(1) < h̄, and since G(α∗) < G(1),
we have Y ∗ < A ·G(1) < h̄, so Ψ(0+) < 0.

By continuity and strict monotonicity, the intermediate value theorem yields unique
β̄ ∈ (0, 1) with Ψ(β̄) = 0.

Step 5: Long-run loss when β < β̄. By Step 4, Ψ(β) < 0 for β < β̄, i.e., Y ∗ < h̄ =
Y NA∗. Combined with Step 2, there exists unique T ∗ > 0 with Yt > Y NA

t for t < T ∗ and
Yt < Y NA

t for t > T ∗.
Step 6: Individual rationality. Condition (T3) holds by construction: αt = α∗(ht)

solves the Bellman equation at each t.
Step 7: Necessity. (a) If µ ≥ 1: as shown above (Necessity of Substitution), h∗ ≥ h̄.

For the trap to fail, we need Y ∗ ≥ h̄. We have Y ∗ = AG(α∗) + h∗(1− α∗)1−γ. Since h∗ ≥ h̄
and AG(α∗) > 0 for α∗ > 0, a sufficient condition for Y ∗ ≥ h̄ is:

AG(α∗) ≥ h̄[1− (1− α∗)1−γ]

Under Assumption 3, Ag(0) > h̄(1− γ). Since g(α) ≥ g > 0 for all α and [1− (1− α)1−γ] ≤
(1− γ)α for α small (by convexity), Assumption 3 implies AG(α∗) > h̄[1− (1− α∗)1−γ] for
α∗ in a neighborhood of zero. For larger α∗, condition (ii) (AG(1) < h̄) may bind; but when
µ ≥ 1, the equilibrium α∗ is bounded away from 1 because higher adoption does not degrade
skills. Thus condition (T2) fails when µ ≥ 1. (b) If A · G(1) ≥ h̄: even with h∗ = 0 and
α∗ = 1, we have Y ∗ ≥ h̄. The trap cannot occur. (c) If β ≥ β̄: by definition of β̄, Y ∗ ≥ h̄. □

Lemma 9 (Learning Spillover Properties). If ψ : R+ → R+ is weakly increasing with ψ(H̄) =
1, then along any path where Ht < H̄, we have ψ(Ht) < 1.

Proof. Since ψ is weakly increasing and Ht < H̄, we have ψ(Ht) ≤ ψ(H̄) = 1. If ψ is
strictly increasing on some neighborhood of H̄, the inequality is strict. If ψ is constant on
[Ht, H̄], then ψ(Ht) = 1, but this contradicts the assumption that spillovers affect learning
(i.e., ψ′(H) > 0 for some H). Under the maintained assumption that learning spillovers are
operative, ψ(Ht) < 1 when Ht < H̄.

Proposition 5 (Spillover Bias).
Let hUt , h

NU
t , and hNA

t denote human capital at time t for users, non-users in an AI-adopting
economy, and the no-adoption counterfactual, respectively.

With learning spillovers ψ(H), non-users’ skill accumulation depends on aggregate human
capital: hNU

t+1 = (1 − δ)hNU
t + λφ(hNU

t ) · ψ(Ht). By Lemma 9, ψ(Ht) < ψ(H̄) = 1 when
Ht < H̄, so non-users accumulate skills more slowly than in the no-adoption counterfactual.
By induction, hNU

t < hNA
t = h̄ for all t > 0.

The cross-sectional counterfactual is:

∆CS
t = Y (hUt , αt)− Y (hNU

t , 0) = A ·G(αt) + hUt (1− αt)
1−γ − hNU

t

The long-run counterfactual is:

∆LR
t = Y (hUt , αt)− Y (hNA

t , 0) = A ·G(αt) + hUt (1− αt)
1−γ − h̄
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The difference is:
∆CS

t −∆LR
t = h̄− hNU

t > 0

since hNU
t < h̄ for t > 0. The gap is zero at t = 0 (before adoption affects non-users) and

strictly increasing in t as hNU
t falls further below h̄. □

Proposition 6 (State-Path Divergence).
Part (i): We establish two claims about ∆SC

t .
Claim 1: Bounded absolute gain, growing relative gain. By Lemma 1 and Proposition 3,

hUt → h∗ < h̄ as t → ∞ when µ < 1. The state-conditional gain is ∆SC
t = Y (hUt , αt) −

Y (hUt , 0) = A ·G(αt) + hUt (1− αt)
1−γ − hUt . Rewriting:

∆SC
t = A ·G(αt)− hUt [1− (1− αt)

1−γ]︸ ︷︷ ︸
>0 for αt>0

As hUt → h∗, the absolute gain ∆SC
t → A · G(α∗) − h∗[1 − (1 − α∗)1−γ], which is bounded.

The relative gain ∆SC
t /hUt satisfies:

∆SC
t

hUt
=
A ·G(αt)

hUt
− [1− (1− αt)

1−γ]

For parameterizations where h∗ is small relative to h̄ (i.e., when skill atrophy is severe), this
ratio can become large. In the limit as h∗ → 0 across parameter sequences, the relative gain
diverges.

Claim 2: Ratio is strictly increasing. Along the transition path, hUt is decreasing (since
h0 = h̄ > h∗ and the system converges monotonically). The numerator A ·G(αt) is bounded,
while the denominator hUt falls. Hence ∆SC

t /hUt is strictly increasing in t.
Part (ii): From Proposition 8, when the economy is in a skill trap, steady-state output

satisfies Y ∗ < h̄ = Y NA. Yet for any t sufficiently large that hUt is near h∗, we have ∆SC
t > 0

(AI raises current output given current skills). This is the core of state-path divergence:
∆SC

t > 0 while Y ∗ < h̄. □

Corollary 1 (Welfare Reversal Under Patient Evaluation).
Consider the path counterfactual ∆PATH(β̃) =

∑∞
τ=0 β̃

τ [Y user
τ − Y NA

τ ]. For the firm’s own

discount factor β, revealed preference implies ∆PATH(β) ≥ 0. However, when β̃ > β̄, more
weight is placed on long-run outcomes where Y user

t < Y NA
t (for t large). Since Y ∗ < h̄, the

tail of the sum is negative, and for β̃ sufficiently large, ∆PATH(β̃) < 0. □

Proposition 7 (Feedback Loop: Stabilizing Force on Levels).
By Proposition 4(i), ∂α∗/∂A > 0 and ∂h∗/∂A < 0: higher AI quality induces more adoption
and lower steady-state skills.

Consider two systems:

� System (a): Fixed AI quality A = A0 = Q(H̄, 0) (quality when humans are fully skilled
and AI is unused). Steady state H∗(A0) satisfies δH = λℓ(α∗(H;A0))φ(H).

� System (b): Endogenous AI quality. Steady state (H∗∗, A∗∗) satisfies both the skill
stationarity condition and A∗∗ = Q(H∗∗, α∗∗).
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In system (b), if α∗∗ > 0 and H∗∗ < H̄ (skill atrophy occurs), then:

A∗∗ = Q(H∗∗, α∗∗) < Q(H̄, 0) = A0

since ∂Q/∂H > 0 and ∂Q/∂α < 0. The feedback loop degrades AI quality.
The key observation is that this degradation partially protects human capital. From

Proposition 4(i):

∂h∗

∂A
< 0 ⇒ A∗∗ < A0 ⇒ H∗∗ = h∗(A∗∗) > h∗(A0) = H∗(A0)

Lower AI quality induces less adoption, which reduces skill atrophy. □

Corollary 2 (Sign Reversal).
In the skill trap, Y ∗ < h̄ by Proposition 8, so ∆LR = Y ∗ − h̄ < 0. For ∆CS > 0, we
need Y ∗ > hNU∗. Learning spillovers ensure hNU∗ < h̄: non-users’ steady-state skill satisfies
δhNU∗ = λφ(hNU∗)ψ(H∗) with ψ(H∗) < 1, implying hNU∗ < h̄. When Y ∗ > hNU∗ (AI
users outperform degraded non-users) but Y ∗ < h̄ (AI users underperform the no-adoption
benchmark), we have ∆CS > 0 > ∆LR. □

Propositions 9 and 10 (Ability Reversal, Vintage Premium, and
U-Shaped Inequality).
Under competitive labor markets with wages equal to marginal products, w(h) = f ′(h)(1−
α)1−γ. For the scarcity results, we assume an aggregate production function with imper-
fect substitution across worker vintages: Y = F (Npre · hpre, NAI · hAI) where F exhibits
diminishing marginal products.

Proposition 9(i): Let ability θ enter through φi(h) = θiφ(h), so high-ability workers
learn faster. From the stationarity condition δh̄(θ) = λθφ(h̄(θ)), implicitly differentiating
gives:

dh̄

dθ
=

λφ(h̄)

δ − λθφ′(h̄)
> 0

The no-adoption steady state is increasing in ability. Similarly, under AI adoption with
µ < 1, the steady state h∗(θ) solves δh∗ = λθℓ(α∗)φ(h∗). Differentiating:

dh∗

dθ
=

λℓ(α∗)φ(h∗)

δ − λθℓ(α∗)φ′(h∗)
> 0

Both h̄ and h∗ are increasing in θ. The skill loss from adoption is h̄(θ)−h∗(θ). To show this
is increasing in θ, we need dh̄/dθ > dh∗/dθ. Comparing the two expressions: since ℓ(α∗) < 1
when α∗ > 0 and µ < 1, the numerator of dh∗/dθ is smaller than that of dh̄/dθ. Under mild
regularity (the denominators are comparable), we have dh̄/dθ > dh∗/dθ, so the skill gap
h̄(θ)−h∗(θ) is increasing in ability. This holds exactly when φ(h)/[δ−λθφ′(h)] is increasing
in θ evaluated at each respective steady state – a condition satisfied in our calibrations.

Proposition 9(ii): At t = 0, pre-AI workers have hpre = h̄ and post-AI workers begin
accumulating with µ < 1. As AI-trained workers’ skills converge to h∗ < h̄, the vintage
gap hpre − hpostt grows. With Npre

t = Npre
0 e−νt (retirement at rate ν), scarcity drives up the

premium.
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Proposition 10: The premium πt = wpre/wpost
t . Initially, AI compresses wages by

raising wpost
t for low-skill workers. As hpostt → h∗ < hpre, the wage gap widens. As Npre

t → 0,
remaining pre-AI workers become arbitrarily scarce and πt → ∞. □

Proposition 11 (Human Capital Externality).
The social planner maximizes

∑
t β

t[Y (Ht, αt;A) + θHη
t ] subject to Ht+1 = (1 − δ)Ht +

λL(αt, Ht;µ) · ψ(Ht), where ψ(H) captures learning spillovers.
The FOC with respect to α includes the term β ∂W

∂H′ · ∂L∂α ·ψ(H) = β ∂W
∂H′λ(1−µ)φ(H)ψ(H)

from human capital dynamics. The social value of human capital ∂W
∂H′ includes the spillover

term θη(H ′)η−1 from the output spillover and additional terms from the learning spillover
ψ′(H), which are absent from the private value V ′(h′).

When θ > 0 or ψ′(H) > 0, social valuation of human capital exceeds private valuation, so
the social marginal cost of adoption exceeds the private marginal cost. The social optimum
therefore involves lower adoption: αS < αD.

When θ = 0 and ψ(H) ≡ 1, social and private valuations coincide, the FOCs are identical,
and the decentralized equilibrium is efficient. □

Proposition 12 (Training Data Externality).
Part (i): With endogenous AI quality, At+1 = (1 − ζ)At + ζQ(Ht, ᾱt) with ∂Q/∂ᾱ < 0.
Each atomistic firm i chooses αi taking ᾱ as given. The private FOC is:

∂Y

∂αi

= βV ′(h′)λ(1− µ)φ(h)

which ignores the effect of αi on ᾱ (since firm i is measure zero) and hence on future AI
quality. The social planner internalizes that aggregate adoption affects AI quality, adding
the term β(∂W/∂A′) · ζ(∂Q/∂ᾱ) < 0 to the FOC. This additional cost implies αS < αD.

Part (ii): Define ∆WHC ≡ W (H̄, A0) − W (H∗, A0) as the welfare loss from human
capital externalities alone (holding A fixed at A0), and ∆W data ≡ W (H̄, A0)−W (H̄, Adata)
as the loss from training data externalities alone (holding H fixed at H̄). The total loss
is ∆W total ≡ W (H̄, A0) − W (H∗∗, A∗∗), where (H∗∗, A∗∗) is the joint equilibrium. Since
H∗∗ < H̄ worsens data quality (∂Q/∂H > 0) and A∗∗ < A0 affects adoption incentives,
we have ∆W total > ∆WHC + ∆W data: the externalities reinforce each other in general
equilibrium. □

Proposition 13 (Training Mandates).
Without policy, the decentralized equilibrium features adoption αD > αS (by Proposi-
tion 11). A mandate ρ constrains α ≤ 1− ρ.

If ρ < 1− αD, the mandate is not binding and has no effect. If ρ > 1− αS, the mandate
forces α < αS, which is below the social optimum – welfare falls.

For ρ ∈ [1 − αD, 1 − αS], the mandate binds and reduces adoption toward the social
optimum. Welfare rises as ρ increases (adoption falls) until α = αS.

The optimal mandate ρ∗ = 1− αS exactly implements the social optimum: firms choose
α = 1− ρ∗ = αS since the constraint binds.

Productivity effect: Current output is Y (H,α) = A ·G(α)+H(1−α)1−γ. At αD > αS,
unregulated output exceeds mandated output in the short run (since Yα > 0 locally when
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firms are adopting). But welfare includes the present value of human capital:

W =
∑
t

βt[Yt + θHη
t ]

The mandate sacrifices current Y to raise future H, improving W when externalities are
present. □

Proposition 14 (AI Design).
Part (i): From Proposition 4, steady-state human capital h∗ satisfies δh∗ = λℓ(α∗;µ)φ(h∗)
where ℓ(α;µ) = (1 − α) + µα. For fixed α, ∂ℓ/∂µ = α > 0, so higher µ raises learning and
thus h∗. The indirect effect through α∗(µ) reinforces this when µ < 1 (higher µ reduces
overadoption incentives).

Part (ii): Welfare is W =
∑

t β
t[Y (ht, αt) + θHη

t ]. At steady state:

∂W

∂µ
=
∂W

∂h∗
∂h∗

∂µ
+
∂W

∂α∗
∂α∗

∂µ

The first term is positive (higher µ raises h∗, which raises welfare). The second term captures
the adoption response: higher µ changes optimal α∗, but since µ directly improves learning
quality, the welfare gain from µ exceeds what could be achieved by equivalently constraining
α.

Part (iii): Commercial AI maximizes user adoption, which depends on immediate pro-
ductivity gains. Users prefer Autocomplete because it minimizes effort. If users are myopic
(underweight future skill) or do not internalize spillovers (their skill loss harms others’ learn-
ing), they choose µ below the social optimum. □

Corollary (Inequality Dynamics).
Wage variance is σ2

t = E[w2
t ]− (E[wt])

2. With two groups, this simplifies to:

σ2
t =

Npre
t

N
(wpre)2 +

NAI
t

N
(wAI

t )2 −
(
Npre

t

N
wpre +

NAI
t

N
wAI

t

)2

Short run: AI compresses wages by raising wAI
t for low-skill workers. With wpre fixed

and wAI
t rising, the gap shrinks and σ2

t falls.
Long run: As hAI

t → h∗ < hpre, the wage gap wpre − wAI
t widens. Combined with

Npre
t → 0, variance eventually rises as the small pre-AI cohort commands large premiums.
The turning point T ∗ occurs when compression effects are overtaken by scarcity. Faster

atrophy (higher (1− µ)α∗) accelerates this transition. □

Proposition 15 (Selection Effects).
Part (i): The FOC for firm i’s adoption choice is:

A · g(αi)− hi(1− γ)(1− αi)
−γ = βiV

′(h′i)λ(1− µ)φ(hi)

With βi heterogeneous, patient firms (high βi) have higher RHS, implying lower α∗
i . Selection

on patience: impatient firms adopt more, gaining short-run competitive advantage but losing
long-run human capital.
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Part (ii): Let si,t be firm i’s market share. With si,t ∝ Yi,t, firms with high αi have high
si,t in the short run. Survivor bias: cross-sectional samples overweight high-α firms because
they have larger market shares, overstating measured AI benefits.

Part (iii): The bias is Cov(si,t, hi,t). Since si,t is high when αi is high (short-run pro-
ductivity), while hi,t is low when αi is high (skill atrophy), this covariance is negative.
Cross-sectional estimates weighted by market share understate skill degradation. □

Proposition 16 (Certification Equilibrium).
Part (i): Consider a candidate separating equilibrium with threshold h∗: workers with
h ≥ h∗ certify, others do not. Employers observe h directly for certified workers and pay
wC(h) = f ′(h). For uncertified workers, employers pay expected productivity:

wU = E[f ′(h)|h < h∗] =

∫ h∗

0
f ′(s)dG(s)

G(h∗)

Certification is individually rational for worker with skill h if f ′(h) − c ≥ wU , i.e., h ≥ h∗

where h∗ solves f ′(h∗) − c = wU(h∗). This fixed point exists and is unique under standard
regularity conditions.

Part (ii): In the absence of certification, wages equal w = E[f ′(h)] for all workers. With
certification, wC(h) = f ′(h), so high-skill workers reveal type and earn f ′(h) > E[f ′(h)]. The
return to skill investment increases because skill becomes observable.

Part (iii): Private return to skill with certification is ∂wC/∂h = f ′(h) > 0, since
f is increasing in h. Without certification, wages pool across unobservable skill levels:
∂w/∂h = 0. The higher private return under certification, f ′(h) > 0 = ∂w/∂h, induces more
skill investment, partially offsetting AI-induced atrophy. □

Corollary (Certification as Partial Remedy).
Certification increases the private return to skill by making skill observable, but does not
affect the externality: each firm still ignores how its workers’ skills benefit other firms through
spillovers (θHη) and learning spillovers (ψ(H)). The social FOC includes ∂W/∂H ′ ·∂H ′/∂α,
which exceeds the private marginal cost whether or not certification exists. Hence αD > αS

persists, though the gap may narrow. □

Proposition 17 (Optimal AI Design).
The welfare-maximizing AI designer solves:

max
µ

W (µ) =
∞∑
t=0

βtY (ht(µ), α
∗(ht, µ))

subject to the equilibrium skill dynamics ht+1 = (1− δ)ht + λℓ(α∗(ht, µ))φ(ht).

Part (i): Differentiating: dW
dµ

=
∑

t β
t
[
∂Y
∂h

∂ht

∂µ
+ ∂Y

∂α
∂α∗

∂µ

]
. From Proposition 4, ∂α∗/∂µ >

0 and ∂h∗/∂µ > 0 when µ < 1. Both effects work in the same direction: higher µ is
welfare-improving.

Part (ii): Private firm i maximizes πi = Yi − c(µ) where c(µ) is the cost of designing
high-µ AI. The FOC is ∂Yi/∂µ = c′(µ). Since ∂Y/∂µ > 0, firms do choose positive µ, but
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they ignore the externality on aggregate human capital. The social planner’s FOC includes
∂W/∂H · ∂H/∂µ > ∂Yi/∂µ, implying µS > µD.

Part (iii): Define “frustration” as ϕ = 1/µ (inverse pedagogical quality). Users prefer
low ϕ (easy AI), but welfare-maximizing ϕS < ϕD: socially optimal AI is more frustrating
than what users would choose. □

Proposition 18 (Optimal AI Tax).
The social planner’s problem is:

W (H,A) = max
α

{Y (H,α;A) + θHη + βW (H ′, A′)}

subject to H ′ = (1− δ)H + λ[1− (1− µ)α]φ(H)ψ(H) and A′ = (1− ζ)A+ ζQ(α,H). Note
that the learning spillover ψ(H) enters the human capital transition, and the AI quality
transition reflects endogenous data quality.

The social FOC is:

Yα = β
∂W

∂H ′ · λ(1− µ)φ(H)ψ(H) + β
∂W

∂A′ · ζQα

The left side is the marginal output benefit. The right side sums the marginal costs through
human capital ( ∂W

∂H′ > 0, ∂L
∂α

< 0 when µ < 1) and AI quality (∂W
∂A′ > 0, ∂Q

∂α
< 0 when AI

adoption degrades training data).
The private FOC is Yα = βV ′(h′)λ(1 − µ)φ(h), which ignores spillovers (θHη) and AI

quality effects.
The optimal tax τ ∗ equates private and social marginal costs:

τ ∗ = β
∂W

∂H ′λ(1− µ)φ(H)− βV ′(h′)λ(1− µ)φ(h)︸ ︷︷ ︸
HC externality

+ β
∂W

∂A′ ζ

∣∣∣∣∂Q∂α
∣∣∣∣︸ ︷︷ ︸

Training data externality

The first component captures the difference between social and private valuation of human
capital (arising from spillovers). The second captures the training data effect, which firms
ignore entirely.

Corrective feedback: As α increases, H falls (in the substitution regime). With θ >
0, ∂W

∂H
is increasing in the spillover contribution, which rises as H falls (scarcity increases

marginal value). Thus τ ∗ rises with α. □

Competitive Overadoption (Appendix Result).
Consider a symmetric duopoly with firms A and B. Firm i’s payoff is πi = si(αi, αj) ·
Π(Yi, Yj)− c(αi), where si = Yi/(Yi+Yj) is market share, Π is total industry profit, and c(α)
captures the human capital cost of adoption.

Firm i’s FOC:
∂si
∂αi

Π+ si
∂Π

∂αi

= c′(αi)

The first term, ∂si
∂αi

Π > 0, represents the competitive motive: higher adoption steals market
share from the rival.
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A joint-profit maximizer chooses αM to maximize total profits net of costs: maxα[Π(α, α)−
2c(α)] subject to both firms adopting identically. The FOC is ∂Π

∂α
= 2c′(α), which at sym-

metric adoption simplifies to 1
2
∂Π
∂α

= c′(α) per firm. This omits the competitive term ∂si
∂αi

Π
because the joint maximizer internalizes that market share gains are zero-sum.

Since ∂si
∂αi

Π > 0 at any symmetric equilibrium, Nash equilibrium adoption αN satisfies a

FOC with a larger LHS than joint maximization, implying αN > αM .
Part (ii): The competitive term ∂si

∂αi
Π is proportional to ∂si

∂αi
. With si = Yi/(Yi+Yj), we

have:
∂si
∂αi

=
Yj · ∂Yi

∂αi

(Yi + Yj)2

A higher elasticity of market share with respect to productivity increases this term, widening
the gap αN − αM .

Part (iii): With human capital spillovers, firm i’s human capital accumulation depends
on aggregate H: hi,t+1 = (1− δ)hi,t+λℓ(αi)φ(hi)ψ(H). When firm j adopts heavily, H falls,
which reduces ψ(H) and impairs firm i’s skill accumulation even if i restrains.

The total externality combines: (a) the spillover externality (each firm’s adoption de-
grades the skill ecosystem for others); and (b) the competitive externality (each firm’s adop-
tion steals market share). When both operate, firm i adopts heavily both because it un-
dervalues human capital (spillover) and because restraint loses market share (competition).
The effects compound because higher adoption by j both harms i’s workers and forces i to
match adoption to survive.

Formally, let αS denote the social optimum, αD the decentralized (single-firm) solution
ignoring competition, and αN the competitive Nash equilibrium. By definition:

αN − αS = (αD − αS) + (αN − αD) ≡ ∆spill +∆comp

This is an identity, not a behavioral claim. The economic content is that ∆spill > 0 (spillover
distortion) and ∆comp > 0 (competitive distortion), both pushing toward overadoption.

The distortions interact in that neither can be computed in isolation: αD depends on the
skill level that prevails under spillovers, and αN depends on both spillovers and competitive
dynamics. To formalize interaction, define counterfactual benchmarks: let αspill−only be the
equilibrium with spillovers but no competition (single firm or coordinated adoption), and
αcomp−only be the equilibrium with competition but no spillovers. Then:

αN − αS > (αspill−only − αS) + (αcomp−only − αS)

The excess reflects the interaction: spillover-induced skill degradation from high αj makes
firm i’s workers less productive, increasing i’s incentive to rely on AI, which amplifies i’s
competitive adoption. □

Proposition 19 (Feedback Loop Stability).
Part (i): By Proposition 4(i), ∂α∗/∂A > 0 and ∂h∗/∂A < 0. With endogenous A, skill
atrophy causes AI quality to fall: A∗∗ = Q(H∗∗, α∗∗) < Q(H̄, 0) = A0 since ∂Q/∂H > 0,
∂Q/∂α < 0, and H∗∗ < H̄ with α∗∗ > 0. Lower AI quality reduces adoption and raises
steady-state skills: H∗∗ = h∗(A∗∗) > h∗(A0) = H∗(A0) since ∂h∗/∂A < 0. The feedback
loop partially protects human capital.
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Part (ii): For uniqueness, note that the joint steady-state conditions define a continuous
map. The H steady-state locus is downward-sloping in (H,A) space (higher A induces more
adoption, which lowers steady-state H), while the A steady-state locus A = Q(H,α∗(H,A))
is upward-sloping (higher H improves training data quality). The single crossing implies a
unique intersection. For local stability, let (H∗, A∗) be a steady state. Consider perturbation
(H∗ + ϵ, A∗ + δ). The dynamics are:

Ht+1 −H∗ ≈ J11(Ht −H∗) + J12(At − A∗)

At+1 − A∗ ≈ J21(Ht −H∗) + J22(At − A∗)

where the Jacobian J depends on model parameters. Stability requires both eigenvalues of
J to have modulus less than 1.

Part (iii): With ζ small (slow AI adjustment), J21 ≈ ζ · ∂Q/∂H and J22 ≈ 1 − ζ.
The eigenvalues approach those of the H-only system (which is stable by Lemma 6) plus
one eigenvalue near 1. Slow AI adjustment ensures the A dynamics do not destabilize the
system. □
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